emi shielding
Recently Published Documents


TOTAL DOCUMENTS

972
(FIVE YEARS 447)

H-INDEX

59
(FIVE YEARS 18)

2022 ◽  
Vol 7 ◽  
pp. 100203
Author(s):  
M. Nasreen Taj ◽  
B. Daruka Prasad ◽  
Ramarao Narapareddy ◽  
H. Nagabhushana ◽  
G. Ramakrishna ◽  
...  

Author(s):  
Chillu Naresh ◽  
Gandluri Parameswarreddy ◽  
Asapu Vinaya Kumar ◽  
Rengaswamy Jayaganthan ◽  
Venkatachalam Subramanian ◽  
...  

Abstract In the present study, hybrid composites are prepared by reinforcing various concentrations of high permittivity zirconia nanofiller into epoxy/CNT compositions to test their usability in EMI shielding applications in the X and Ku bands. ZrO2 nanofiller is added in different proportions to improve absorbance shielding while maintaining the composite conductivity uniform by adding constant CNT concentration to restrict the reflectance shielding. The microscopic studies have revealed an efficient dispersion of ZrO2 nanoparticles in the CNT networks and provided a smoother surface. The presence of zirconia nanofillers increased the dielectric properties, viz. the dielectric constant (194 at 0.1 Hz) and loss tangent (1.57 at 0.1 Hz), respectively, whereas the conductivity was found to be invariantly constant. The increased permittivity of composites enhanced the shielding by absorption, while the shielding by reflection is least influenced by the addition of zirconia nanofiller. The addition of zirconia nanofillers increased the permittivity and tan delta, allowing charges to accumulate at the interfacial areas for incoming EM radiations, resulting in increased absorbance shielding. Limiting the CNT concentration in all composites to the same level resulted in the formation of conductive networks, thus resulting in uniform reflectance shielding for all the hybrid composites in the present study. The dynamic mechanical analysis showed the improvement in the storage modulus and activation energy due to the enhanced interfacial adhesion and cross-linked polymer density.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 234
Author(s):  
Yang Yang ◽  
Shuiping Zeng ◽  
Xiping Li ◽  
Zhonglue Hu ◽  
Jiajia Zheng

Lightweight and efficient electromagnetic interference (EMI) shielding materials play a vital role in protecting high-precision electronic devices and human health. Porous PVDF/CNTs/urchin-like Ni composites with different cell sizes from nanoscale to microscale were fabricated through one-step supercritical carbon dioxide (CO2) foaming. The electrical conductivity and electromagnetic interference (EMI) shielding performance of the composites with different cell sizes were examined in detail. The results indicated that the nanoscale cell structure diminishes the EMI shielding performance of the composite, whereas the microscale cell structure with an appropriate size is beneficial for improving the EMI shielding performance. A maximum EMI shielding effectiveness (SE) of 43.4 dB was achieved by the composite foams which is about twice that of the solid composite. Furthermore, as the supercritical CO2 foaming process reduces the density of the composite by 25–50%, the EMI SSE (specific shielding effectiveness)/t(thickness) of the composite reaches 402 dB/(g/cm2), which is the highest value of polymer foam obtained to the best of the authors’ knowledge. Finally, compression tests were performed to show that the composites still maintained excellent mechanical properties after the supercritical CO2 foaming process.


2022 ◽  
Author(s):  
Yongqin Hu ◽  
Chen Hou ◽  
Yuxia Shi ◽  
Jiamei Wu ◽  
Da Yang ◽  
...  

Abstract Electromagnetic pollution seriously affects the human reproductive system, cardiovascular system, people’s visual system, and so on. A novel versatile stretchable and biocompatible electromagnetic interference (EMI) shielding film has been developed, which could effectively attenuate electromagnetic radiation. The EMI shielding film was fabricated with a convenient solution casting and steam annealing with 2D MXene, iron oxide nanoparticles, and soluble polyurethane. The EMI shielding effectiveness is about 30.63 dB at 8.2 GHz, based on its discretized interfacial scattering and high energy conversion efficiency. Meanwhile, the excellent tensile elongation is 30.5%, because of the sliding migration and gradient structure of the nanomaterials doped in a polymer matrix. In addition, the film also demonstrated wonderful biocompatibility and did not cause erythema and discomfort even after being attached to the arm skin over 12 hours, which shows the great potential for attenuation of electromagnetic irradiation and protection of human health.


Author(s):  
Aswathi Madathinal Kunjappan ◽  
Arunima Reghunadhan ◽  
Ajitha A. Ramachandran ◽  
Lovely Mathew ◽  
Moothetty Padmanabhan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document