Reliability Analysis of Self-Anchored Suspension Bridge by Improved Response Surface Method

2011 ◽  
Vol 90-93 ◽  
pp. 869-873 ◽  
Author(s):  
Xiao Lin Yu ◽  
Quan Sheng Yan

The response surface method (RSM) developed in recent years is an effective way to solve the structural reliability problems with implicit performance function. In order to improve the computational efficiency and make RSM suitable well to large and complex engineering structures, the reliability analysis method based on uniform design method (UDM) and support vector machine (SVM) was proposed. UDM is adopted to select training data and SVM is used as response surface. Structural reliability index is calculated in combination with the traditional reliability analysis methods (such as, the first-order reliability method (FORM), the second-order reliability method (SORM) or Monte Carlo simulation method (MCSM)). Numerical examples show that sampled with the UDM can greatly reduce the number of samples required for training by SVM model, and a very good approximation of the limit state surface can be obtained to get the failure probability. The reliability analysis of the under serviceability limit-state of a typical self-anchored suspension bridge——Sanchaji Bridge was carried out with the improved response surface method.

2021 ◽  
Author(s):  
Silvia J. Sarmiento Nova ◽  
Jaime Gonzalez-Libreros ◽  
Gabriel Sas ◽  
Rafael A. Sanabria Díaz ◽  
Maria C. A. Texeira da Silva ◽  
...  

<p>The Response Surface Method (RSM) has become an essential tool to solve structural reliability problems due to its accuracy, efficacy, and facility for coupling with Nonlinear Finite Element Analysis (NLFEA). In this paper, some strategies to improve the RSM efficacy without compromising its accuracy are tested. Initially, each strategy is implemented to assess the safety level of a highly nonlinear explicit limit state function. The strategy with the best results is then identified and used to carry out a reliability analysis of a prestressed concrete bridge, considering the nonlinear material behavior through NLFEA simulation. The calculated value of &#120573; is compared with the target value established in Eurocode for ULS. The results showed how RSM can be a practical methodology and how the improvements presented can reduce the computational cost of a traditional RSM giving a good alternative to simulation methods such as Monte Carlo.</p>


Author(s):  
Reda Farag ◽  
Achintya Haldar ◽  
Mahmoud El-Meligy

A novel reliability evaluation procedure is proposed for analysis and design of offshore mooring dolphin structures (MDS). It is a hybrid approach consisting of an improved response surface method (IRSM), second-order reliability method (SORM), and several advanced factorial schemes. It is denoted as IRSM-SORM. Several schemes of IRSM-SORM are proposed and clarified with the help of an illustrative example.


2013 ◽  
Vol 712-715 ◽  
pp. 1506-1509 ◽  
Author(s):  
Guang Bo Li ◽  
Guang Wei Meng ◽  
Feng Li ◽  
Li Ming Zhou

The response surface method is adopted to analyze the structural reliability. This paper presents a new response surface method with the uniform design method to predict the failure probability of structures. It is the response surface method based on Fourier orthogonal basis function (RSM-Fourier). To reduce computational costs in structural reliability analysis, approximate Fourier response surface functions for reliability assessment have been suggested. The method involves the selection of training datasets for establishing a model by the uniform design points, the approximation of the limit state function by the trained model and the estimation of the failure probability using first-order reliability method (FORM). The proposed method is applied to examples, compared with other methods to demonstrate its effectiveness.


2013 ◽  
Vol 860-863 ◽  
pp. 2970-2974
Author(s):  
Wei Zhao ◽  
Guo Shao Su ◽  
Li Hua Hu

Aiming to the problems of low precision using traditional response surface method for structural reliability analysis with high nonlinear implicit performance function, Gaussian process regression (GPR) model reconstructing response surface was hybridized into the checking design point method for solving the reliability. Then, an iterative algorithm is presented to reduce the errors of GPR response surface self-adaptively. Thus, a new method namely Gaussian process based response surface for reliability analysis of suspension bridge was proposed. The research results show that the proposed method is feasible. The proposed method has advantages of high efficiency and excellent adaptability for reliability analysis of the complex structural such as suspension bridge.


2019 ◽  
Vol 37 (4) ◽  
pp. 1423-1450
Author(s):  
Hailiang Su ◽  
Fengchong Lan ◽  
Yuyan He ◽  
Jiqing Chen

Purpose Because of the high computational efficiency, response surface method (RSM) has been widely used in structural reliability analysis. However, for a highly nonlinear limit state function (LSF), the approximate accuracy of the failure probability mainly depends on the design point, and the result is that the response surface function composed of initial experimental points rarely fits the LSF exactly. The inaccurate design points usually cause some errors in the traditional RSM. The purpose of this paper is to present a hybrid method combining adaptive moving experimental points strategy and RSM, describing a new response surface using downhill simplex algorithm (DSA-RSM). Design/methodology/approach In DSA-RSM, the operation mechanism principle of the basic DSA, in which local descending vectors are automatically generated, was studied. Then, the search strategy of the basic DSA was changed and the RSM approximate model was reconstructed by combining the direct search advantage of DSA with the reliability mechanism of response surface analysis. Findings The computational power of the proposed method is demonstrated by solving four structural reliability problems, including the actual engineering problem of a car collision. Compared to specific structural reliability analysis methods, the approach of modified DSA interpolation response surface for structural reliability has a good convergent capability and computational accuracy. Originality/value This paper proposes a new RSM technology based on proxy model to complete the reliability analysis. The originality of this paper is to present an improved RSM that adjusts the position of the experimental points judiciously by using the DSA principle to make the fitted response surface closer to the actual limit state surface.


2012 ◽  
Vol 238 ◽  
pp. 611-616
Author(s):  
Bu Yu Jia ◽  
Quan Sheng Yan ◽  
Xiao Lin Yu

The paper aims to do the reliability analysis by the Kriging model. Its excellent approximating capability is taken into consideration, which is superior to traditional response surface method. An improved response surface method has been proposed based on the Kriging model. The seismic response of structure is characterized by nonlinear and complexity, more difficulties in the reliability analysis have been found as well. Compared to other methods of reliability analysis, the response surface method is regarded as an effective way to solve such problems. Thus the improved response surface method based on the Kriging is utilized to analyze the structural first excursion dynamic reliability problem under random seismic excitation. Meanwhile, the influence on the reliability due to the randomness of structural parameters is analyzed.


2015 ◽  
Vol 744-746 ◽  
pp. 222-225
Author(s):  
Wei Zhao ◽  
Yang Yang Chen ◽  
Qiu Wei Yang ◽  
Xue Yan Li

A response surface method (RSM) for composite laminate structures is proposed in this paper, which is based on the moving Kriging interpolation. The substitute limit state function for failure criteria is discussed and constructed on series of deterministic finite element analysis. Combined with first order reliability method, reliabilities of composite laminate structures are subsequently obtained. Reliability analysis of a composite laminate plate, as a numerical example, is illustrated by the proposed method. The results demonstrate the practicability of the method.


2012 ◽  
Vol 532-533 ◽  
pp. 408-411
Author(s):  
Wei Tao Zhao ◽  
Yi Yang ◽  
Tian Jun Yu

The response surface method was proposed as a collection of statistical and mathematical techniques that are useful for modeling and analyzing a system which is influenced by several input variables. This method gives an explicit approximation of the implicit limit state function of the structure through a number of deterministic structural analyses. However, the position of the experimental points is very important to improve the accuracy of the evaluation of failure probability. In the paper, the experimental points are obtained by using Givens transformation in such way these experimental points nearly close to limit state function. A Numerical example is presented to demonstrate the improved accuracy and computational efficiency of the proposed method compared to the classical response surface method. As seen from the result of the example, the proposed method leads to a better approximation of the limit state function over a large region of the design space, and the number of experimental points using the proposed method is less than that of classical response surface method.


Sign in / Sign up

Export Citation Format

Share Document