Consequence Analysis of Jet Fire Accidents Occurred in Salt Cavern Natural Gas Storage: Hazard Distance and its Influence Factors

2014 ◽  
Vol 1008-1009 ◽  
pp. 346-355
Author(s):  
Qi Lin Feng ◽  
Hao Cai ◽  
Zhi Long Chen ◽  
Dong Jun Guo ◽  
Yin Ma

Natural gas storages in salt caverns are receiving an increasingly important role in energy storage system of many countries. This study focuses on analyzing the consequence of jet fire associated with natural gas storages in salt caverns. A widely used software, ALOHA, was adopted as simulation tool. The reliability of ALOHA was validated by comparing the simulated results with the field data observed in real accidents and the values calculated by a simple model presented in a previous study. The China's first natural gas storage in salt cavern, Jintan natural gas storage, was selected for case study. The case study reveals that the hazard distance of jet fire decreased with the increase of pipeline length, as well as the decrease of pipeline diameter and operating pressure.

2014 ◽  
Vol 53 (11) ◽  
pp. 4522-4523 ◽  
Author(s):  
Pradeepta K. Sahoo ◽  
Mathew John ◽  
Bharat L. Newalkar ◽  
N. V. Choudhary ◽  
K. G. Ayappa

2014 ◽  
Vol 119 ◽  
pp. 190-203 ◽  
Author(s):  
P.K. Sahoo ◽  
B.P. Prajwal ◽  
Siva Kalyan Dasetty ◽  
M. John ◽  
B.L. Newalkar ◽  
...  

Author(s):  
L. Vasiliev ◽  
L. Kanonchik ◽  
M. Kuzmich ◽  
V. Kulikouski

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3274
Author(s):  
Evgeny M. Strizhenov ◽  
Sergey S. Chugaev ◽  
Ilya E. Men’shchikov ◽  
Andrey V. Shkolin ◽  
Anatoly A. Zherdev

Adsorbed natural gas (ANG) technology is a promising alternative to traditional compressed (CNG) and liquefied (LNG) natural gas systems. Nevertheless, the energy efficiency and storage capacity of an ANG system strongly depends on the thermal management of its inner volume because of significant heat effects occurring during adsorption/desorption processes. In the present work, a prototype of a circulating charging system for an ANG storage tank filled with a monolithic nanoporous carbon adsorbent was studied experimentally under isobaric conditions (0.5–3.5 MPa) at a constant volumetric flow rate (8–18 m3/h) or flow mode (Reynolds number at the adsorber inlet from 100,000 to 220,000). The study of the thermal state of the monolithic adsorbent layer and internal heat exchange processes during the circulating charging of an adsorbed natural gas storage system was carried out. The correlation between the gas flow mode, the dynamic gas flow temperature, and the heat transfer coefficient between the gas and adsorbent was determined. A one-dimensional mathematical model of the circulating low-temperature charging process was developed, the results of which correspond to the experimental measurements.


Sign in / Sign up

Export Citation Format

Share Document