salt caverns
Recently Published Documents


TOTAL DOCUMENTS

192
(FIVE YEARS 65)

H-INDEX

16
(FIVE YEARS 6)

2022 ◽  
Vol 5 (1) ◽  
pp. 98
Author(s):  
Vagia Ioanna Makri ◽  
Spyridon Bellas ◽  
Vasilis Gaganis

Although subsurface traps have been regularly explored for hydrocarbon exploration, natural gas and CO2 storage has drawn industrial attention over the past few decades, thanks to the increasing demand for energy resources and the need for greenhouse gas mitigation. With only one depleted hydrocarbon field in Greece, saline aquifers, salt caverns and sedimentary basins ought to be evaluated in furtherance of the latter. Within this study the potential of the Greek subsurface for underground storage is discussed. An overview and re-evaluation of the so-far studied areas is implemented based on the available data. Lastly, a pragmatic approach for the storage potential in Greece was created, delineating gaps and risks in the already proposed sites. Based on the above details, a case study for CO2 storage is presented, which is relevant to the West Katakolo field saline aquifer.


Energy ◽  
2022 ◽  
pp. 123148
Author(s):  
Jinlong Li ◽  
Ning Zhang ◽  
Wenjie Xu ◽  
Dmitri Naumov ◽  
Thomas Fischer ◽  
...  

2021 ◽  
Author(s):  
Louis François Londe

Abstract Hydrogen can be stored in underground caverns or geological structures in one of four ways. The easiest way to store hydrogen is in salt caverns. These are created by injecting fresh water or water with low salt content into a well down to a salt geological layer, with the extraction of salt-saturated brine. The caverns measure between 50 and 100 metres in diameter and up to several hundred meters tall where the salt formation is thick enough. Salt caverns are not lined, as the salt itself acts as a sealant. This type of storage is suitable for storing hydrogen at extremely high pressures where the salt layer is deep enough. The second way to store large quantities of hydrogen is to inject pure hydrogen or a hydrogen-methane mix into porous rock, in a depleted oil or gas field, or an aquifer. The hydrogen content may vary from a few per cent to 100 per cent. Reservoir and biochemical testing/modelling are to be performed accordingly. The hydrogen-methane mix can be withdrawn and injected into the network. Alternatively, hydrogen can be separated from methane at the well head, for example using pressure swing adsorption technology. Hydrogen can also be stored underground by converting it into a liquid carrier, such as ammonia, which can then be stored in a Lined Rock Cavern. A liner is required to prevent contact between ammonia and water. The pressure and temperature are adapted to optimise the entire supply chain. The advantage of using ammonia is that proper storage conditions can be fulfilled without the need for excessive pressure or temperature. Lastly, hydrogen can be stored underground by directly injecting it into a Lined Rock Cavern. This may take the form of compressed storage (gaseous hydrogen) or cryogenic storage (liquid hydrogen), the choice once again depending on the supply chain as a whole. A liner is required owing to extremely high pressures or extremely low temperatures. It should be noted that storing hydrogen in a Lined Rock Cavern involves a few technical difficulties that have yet to be resolved. These four underground hydrogen storage techniques differ in terms of their technology readiness level (TRL) and cost. All four will likely be required in the coming years to satisfy the needs of a booming market.


2021 ◽  
Vol 44 ◽  
pp. 103333
Author(s):  
Laura Blanco-Martín ◽  
Ahmed Rouabhi ◽  
Faouzi Hadj-Hassen

2021 ◽  
Vol 43 ◽  
pp. 103229
Author(s):  
Guimin Zhang ◽  
Yuxuan Liu ◽  
Tao Wang ◽  
Hao Zhang ◽  
Zhenshuo Wang ◽  
...  

2021 ◽  
Author(s):  
Fu Jin ◽  
Wang Xi ◽  
Ding Mingming ◽  
Yang Guobin ◽  
Zhang Shunyuan ◽  
...  

Abstract The crude oil price has been keeping at a low level in recent years, which made China's government put more efforts in the development of underground oil storages in depleted salt caverns. Under the initiative of "the Belt and Road", a more concrete concept which is "the Silk Road Economic Belt and the 21st-Century Maritime Silk Road" successfully connects Jiangsu Province in the east of China. Consisting of 20 depleted caverns, Huai'an project that is still under planning is one of the most successful examples that turn depleted salt caverns into underground crude oil storages in China. Each cavern takes up 24×104m3, while the project totally takes up 480×104m3. TDMA algorithm was adopted to solve the heat exchange model of oil, brine and surrounding rocks, revealing the relationship between temperature and cavern pressure. Salt rock safety factor, salt cavern shrinkage ratio, axial stress and ground subsidence were taken into consideration to establish a 3-dimension salt rock creep model for 19 depleted salt caverns, so that the caverns’ shapes were optimized. Hydrodynamics models were used to determine the oil's flow rate into and out of a 1000m deep cavern whose thermal field was simulated by software to reveal the temperature limit of oil and brine. Due to geothermal gradient and continuous heat transmission, the average temperature of oil and brine goes up from 35°C to 44.3°C within 7 years, while the inner pressure goes up from 12.96MPa to 21.93MPa in a depleted salt cavern. Salt creep ratio decreases as oil is stored in underground caverns for a longer period. Salt is hardly penetrated by oil, while the temperature change has a strong influence on caverns’ internal pressure. The thermal expansion factor and compressibility coefficient of crude oil and brine are both crucial to the temperature's effect on internal pressure. Caverns that have larger segments in their upper-middle or middle parts are more stable and resistant to salt creep than those that have larger segments in their lower parts. When oil is injected or pumped out, it is necessary to make the internal pressure lower than the static pressure of surrounding rocks. Hence, the most appropriate flow rate of crude oil is 4.5m/s. Crude oil that is stored in deep salt caverns may be heated up to 60°C due to the geothermal gradient, but the flammable gas in oil is rapidly gasified or even explodes when it is pumped out to the surface. To avoid accidents and air pollution, oil is cooled down before being delivered via pipelines. Oil tanks used to be applied by scale in China, however they are too obvious on the ground to comply with national strategic energy safety. Compared with oil tanks of similar volumes, the Huai'an underground oil storages may save the overall cost by 35.3%. It is the first time that the salt rock creep model is established in depleted salt caverns, while the conclusion overthrew the common preference of regular cylindrical caverns.


Author(s):  
Ahmed I. Osman ◽  
Neha Mehta ◽  
Ahmed M. Elgarahy ◽  
Mahmoud Hefny ◽  
Amer Al-Hinai ◽  
...  

AbstractDihydrogen (H2), commonly named ‘hydrogen’, is increasingly recognised as a clean and reliable energy vector for decarbonisation and defossilisation by various sectors. The global hydrogen demand is projected to increase from 70 million tonnes in 2019 to 120 million tonnes by 2024. Hydrogen development should also meet the seventh goal of ‘affordable and clean energy’ of the United Nations. Here we review hydrogen production and life cycle analysis, hydrogen geological storage and hydrogen utilisation. Hydrogen is produced by water electrolysis, steam methane reforming, methane pyrolysis and coal gasification. We compare the environmental impact of hydrogen production routes by life cycle analysis. Hydrogen is used in power systems, transportation, hydrocarbon and ammonia production, and metallugical industries. Overall, combining electrolysis-generated hydrogen with hydrogen storage in underground porous media such as geological reservoirs and salt caverns is well suited for shifting excess off-peak energy to meet dispatchable on-peak demand.


2021 ◽  
Author(s):  
Elchin Akbarli ◽  
Rufat Mammadbayli

Abstract The company is executing an underground gas storage project at an unprecedented scale. The intent of this paper is to demonstrate the execution methodology and technologies that the company employed to achieve within set deadlines and deliver the work on time and under the given budget. This paper, therefore will focus on outlining all planning, design as well as drilling & completions strategies utilized by the operating company during the execution phase. During Phase 2 of the project, the Drilling Contractor was engaged to deliver a total of 40 wells within a short period of time. These wells were planned to expand the total gas storage capacity at the Tuz Golu facility to ca. 5 bcm of natural gas stored in underground salt caverns. Tuz Golu wells are vertical with three (3) casing string wells. These land wells are big bore and commence from the installation of the 30″ conductor at a depth of 120m using a small 150-ton conductor rig. Pre-installation of conductors significantly helped accelerate the project delivery schedule. Main drilling operations commenced in January 2020. Since the structure wasn't fully explored in spite of 2D seismic work and the first phase operations, a number of wells drilled encountered no salt leading to their abandonment. As a result, the total duration of the project was consequently extended. Re-Engineering and lessons learned during execution helped deliver a successful learning curve in both drilling and completion operations. The strategy of the company to drill a well in stages of top hole, main drilling and the completion using multiple rig operations was successful, bringing an overall well time from 55 at the beginning of the project to 20 days per well. Thorough planning and design of the wells allowed the company to deliver the projects with well integrity, full suitable for gas storage operations. As a result, the project was executed on time and well within the planned budget thus delivering an excellent value to the stakeholders and main client. The Drilling Contractor has been proactive to employ this staged approach from the very beginning of the project. Irrespective of the delays the Drilling Contractor continued operations with the intermittent rig count of 4 to 8 rigs. A large scale operation demanded careful planning and continuous application of lessons learnt from the first phase which were successfully embedded and implemented.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kishan Ramesh Kumar ◽  
Artur Makhmutov ◽  
Christopher J. Spiers ◽  
Hadi Hajibeygi

AbstractA promising option for storing large-scale quantities of green gases (e.g., hydrogen) is in subsurface rock salt caverns. The mechanical performance of salt caverns utilized for long-term subsurface energy storage plays a significant role in long-term stability and serviceability. However, rock salt undergoes non-linear creep deformation due to long-term loading caused by subsurface storage. Salt caverns have complex geometries and the geological domain surrounding salt caverns has a vast amount of material heterogeneity. To safely store gases in caverns, a thorough analysis of the geological domain becomes crucial. To date, few studies have attempted to analyze the influence of geometrical and material heterogeneity on the state of stress in salt caverns subjected to long-term loading. In this work, we present a rigorous and systematic modeling study to quantify the impact of heterogeneity on the deformation of salt caverns and quantify the state of stress around the caverns. A 2D finite element simulator was developed to consistently account for the non-linear creep deformation and also to model tertiary creep. The computational scheme was benchmarked with the already existing experimental study. The impact of cyclic loading on the cavern was studied considering maximum and minimum pressure that depends on lithostatic pressure. The influence of geometric heterogeneity such as irregularly-shaped caverns and material heterogeneity, which involves different elastic and creep properties of the different materials in the geological domain, is rigorously studied and quantified. Moreover, multi-cavern simulations are conducted to investigate the influence of a cavern on the adjacent caverns. An elaborate sensitivity analysis of parameters involved with creep and damage constitutive laws is performed to understand the influence of creep and damage on deformation and stress evolution around the salt cavern configurations. The simulator developed in this work is publicly available at https://gitlab.tudelft.nl/ADMIRE_Public/Salt_Cavern.


Sign in / Sign up

Export Citation Format

Share Document