Study on Prediction of Chaotic Time Series Using Least Squares Support Vector Machines

2014 ◽  
Vol 1061-1062 ◽  
pp. 935-938
Author(s):  
Xin You Wang ◽  
Guo Fei Gao ◽  
Zhan Qu ◽  
Hai Feng Pu

The predictions of chaotic time series by applying the least squares support vector machine (LS-SVM), with comparison with the traditional-SVM and-SVM, were specified. The results show that, compared with the traditional SVM, the prediction accuracy of LS-SVM is better than the traditional SVM and more suitable for time series online prediction.

2018 ◽  
Vol 18 (3) ◽  
pp. 715-724 ◽  
Author(s):  
Xiao Li ◽  
Xin Liu ◽  
Clyde Zhengdao Li ◽  
Zhumin Hu ◽  
Geoffrey Qiping Shen ◽  
...  

Foundation pit displacement is a critical safety risk for both building structure and people lives. The accurate displacement monitoring and prediction of a deep foundation pit are essential to prevent potential risks at early construction stage. To achieve accurate prediction, machine learning methods are extensively applied to fulfill this purpose. However, these approaches, such as support vector machines, have limitations in terms of data processing efficiency and prediction accuracy. As an emerging approach derived from support vector machines, least squares support vector machine improve the data processing efficiency through better use of equality constraints in the least squares loss functions. However, the accuracy of this approach highly relies on the large volume of influencing factors from the measurement of adjacent critical points, which is not normally available during the construction process. To address this issue, this study proposes an improved least squares support vector machine algorithm based on multi-point measuring techniques, namely, multi-point least squares support vector machine. To evaluate the effectiveness of the proposed multi-point least squares support vector machine approach, a real case study project was selected, and the results illustrated that the multi-point least squares support vector machine approach on average outperformed single-point least squares support vector machine in terms of prediction accuracy during the foundation pit monitoring and prediction process.


2014 ◽  
Vol 1051 ◽  
pp. 1009-1015 ◽  
Author(s):  
Ya Li Ning ◽  
Xin You Wang ◽  
Xi Ping He

Support Vector Machines (SVM), which is a new generation learning method based on advances in statistical learning theory, is characterized by the use of many standard technologies of machine learning such as maximal margin hyperplane, Mercel kernels and the quadratic programming. Because the best performance is obtained in many currently challenging applications, SVM has sustained wide attention, and has been become the standard tools of machine learning and data mining. But as a developing technology, SVM still have some problems and its applications are limited. In this paper, SVM and its applications in chaotic time series including predicting chaotic time series, focus on comparison in regression type selection, and kernel type selection in the same regression machine type.


Author(s):  
ZHENG XIANG ◽  
TAIYI ZHANG ◽  
JIANCHENG SUN

A new algorithm for modeling of chaotic systems is presented in this paper. First, more information is acquired utilizing the reconstructed embedding phase space, and the multiwavelets transform provides a sensible decomposition of the data so that the underlying temporal structures of the original time series become more tractable. Second, based on the Recurrent Least Squares Support Vector Machines (RLS-SVM), modeling of the chaotic system is realized. To demonstrate the effectiveness of our algorithm, we use the power spectrum and dynamic invariants involving the Lyapunov exponents and the correlation dimension as criterions, and then apply our method to Chua's circuit time series. The similarity of dynamic invariants between the original and generated time series shows that the proposed method can capture the dynamics of the chaotic time series more effectively.


Sign in / Sign up

Export Citation Format

Share Document