Application of BIM-Based Collision Detection in Pipeline Layout

2014 ◽  
Vol 1065-1069 ◽  
pp. 1678-1682
Author(s):  
Lin Zhang

The core technology of BIM (Building Information Modeling) is a database formed by three-dimensional computer models; as a collection of all information, it is throughout the entire life cycle of the building. This article analyzed the collision detection and combined with a specific pipeline layout project, aiming to discuss the application of BIM technology.

2011 ◽  
Vol 346 ◽  
pp. 312-317 ◽  
Author(s):  
Ning Han ◽  
Zi Feng Yue ◽  
Yuan Fang Lu

As construction space becomes increasingly constrained, the need to avoid collision among various HVAC, sewage and electronic pipes has become a pressing concern for modern building engineering projects. This article uses Building Information Modeling(BIM) technology to construct a three-dimensional piping model and utilizes Autodesk Navisworks software to integrate project data from various operators in order to pinpoint potential conflicts locations and generate a comprehensive ducting collision detection report. The advantages of this virtual construction vehicle include improving engineering, designing quality and efficiency.


2021 ◽  
Vol 13 (14) ◽  
pp. 7990
Author(s):  
Suman Paneru ◽  
Forough Foroutan Jahromi ◽  
Mohsen Hatami ◽  
Wilfred Roudebush ◽  
Idris Jeelani

Traditional energy analysis in Building Information Modeling (BIM) only accounts for the energy requirements of building operations during a portion of the occupancy phase of the building’s life cycle and as such is unable to quantify the true impact of buildings on the environment. Specifically, the typical energy analysis in BIM does not account for the energy associated with resource formation, recycling, and demolition. Therefore, a comprehensive method is required to analyze the true environmental impact of buildings. Emergy analysis can offer a holistic approach to account for the environmental cost of activities involved in building construction and operation in all its life cycle phases from resource formation to demolition. As such, the integration of emergy analysis with BIM can result in the development of a holistic sustainability performance tool. Therefore, this study aimed at developing a comprehensive framework for the integration of emergy analysis with existing Building Information Modeling tools. The proposed framework was validated using a case study involving a test building element of 8’ × 8’ composite wall. The case study demonstrated the successful integration of emergy analysis with Revit®2021 using the inbuilt features of Revit and external tools such as MS Excel. The framework developed in this study will help in accurately determining the environmental cost of the buildings, which will help in selecting environment-friendly building materials and systems. In addition, the integration of emergy into BIM will allow a comparison of various built environment alternatives enabling designers to make sustainable decisions during the design phase.


Author(s):  
Fabrizio Banfi ◽  
Daniela Oreni

The latest developments in the field of generative modeling and building information modeling for heritage building (HBIM) have allowed the authors to increase the level of transmissibility of information through the most modern techniques of virtual and augmented reality (VR-AR). This chapter summarises the last years of applied research in the field of three-dimensional modeling oriented to digitise and correctly represent the built heritage thanks to the integration of the most modern three-dimensional survey techniques with a scan-to-BIM process based on new grades of generation (GOG) and accuracy (GOA). The new paradigm of the complexity of the built heritage, its tangible and intangible values, have been shared through new immersive ways able to increase the information contents and the knowledge accumulated in the last years of one of the most representative and unique buildings of the Lombard architecture: the Cà Granda in Milan.


2020 ◽  
Vol 10 (24) ◽  
pp. 9029
Author(s):  
Bokyeong Lee ◽  
Hyeonggil Choi ◽  
Byongwang Min ◽  
Dong-Eun Lee

In this study, by applying the developed formwork automation design software to three target structures, we reviewed the applicability of the formwork automation design software for the aluminum formwork. To apply the formwork automation design software, we built an aluminum formwork library based on the conversion of two-dimensional (2D) computer-aided design (CAD) data to three-dimensional building information modeling data for all the components of the aluminum formwork. The results of the automated formwork layout on the target structures using the formwork automation design software confirmed that the wall and deck members were laid out by the set algorithm according to the formwork size and direction. However, because of the limited functionality of the software, the level of completion of the formwork layout was found to be lower than that of the manual formwork layout based on 2D CAD data. The currently developed software is based on a simple algorithm, but has a drawback in that the automated layout is limited to only some of its members. Therefore, additional research should be conducted on the development of advanced software through the diversification of the algorithm, automation of preprocessing of the mesh, and analysis of the relationships of all the members comprising the formwork.


Work ◽  
2012 ◽  
Vol 41 ◽  
pp. 114-119 ◽  
Author(s):  
Kerosuo Hannele ◽  
Miettinen Reijo ◽  
Mäki Tarja ◽  
Paavola Sami ◽  
Korpela Jenni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document