industry foundation classes
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 59)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Vol 10 (12) ◽  
pp. 827
Author(s):  
Xiu Lu ◽  
Guannan Li ◽  
Andong Wang ◽  
Qingqin Xiong ◽  
Bingxian Lin ◽  
...  

Photovoltaic energy generation has gained wide attention owing to its efficiency and environmental benefits. Therefore, it has become important to accurately evaluate the photovoltaic energy generation potential of building surfaces. As the number of building floors increases, the area of the facades becomes much larger than that of the roof, providing improved potential for photovoltaic equipment installation. Conventional urban solar potential evaluation methods are usually based on light detection and ranging (LiDAR). However, LiDAR can only be used in existing buildings, and the lack of semantic information in the point cloud data generated by LiDAR makes it impossible to evaluate the photovoltaic potential of facades (including details such as windows) in detail and with accuracy. In this study, we developed a method to accurately extract facades and roofs in order to evaluate photovoltaic potential based on the Industry Foundation Classes. To verify the feasibility of this approach, we used a building from Xuzhou city, Jiangsu province, China. The simulation results indicate that, out of the total building photovoltaic installable area (8995 m2), that of the facade is 8240 m2. The photovoltaic potential of the simulated building could reach 1054.69 MWh/year. The sensitivity studies of the grid resolution, the time interval and the computation time confirmed the reasonability of the determined conditions. The method proposed offers great potential for energy planning departments and the improved utilization of buildings.


2021 ◽  
pp. 1-27
Author(s):  
Justine Flore Tchouanguem ◽  
Mohamed Hedi Karray ◽  
Bernard Kamsu Foguem ◽  
Camille Magniont ◽  
F. Henry Abanda ◽  
...  

Building Information Modelling (BIM) is a process for managing construction project information in such a way as to provide a basis for enhanced decision-making and for collaboration in a construction supply chain. One impediment to the uptake of BIM is the limited interoperability of different BIM systems. To overcome this problem, a set of Industry Foundation Classes (IFC) has been proposed as a standard for the construction industry. Building on IFC, the ifcOWL ontology was developed in order to facilitate representation of building data in a consistent fashion across the Web by using the Web Ontology Language (OWL). This study presents a critical analysis of the ifcOWL ontology and of the associated interoperability issues. It shows how these issues can be resolved by using Basic Formal Ontology (ISO/IEC 21838-2) as top-level architecture. A set of competency questions is used as the basis for comparison of the original ifcOWL with the enhanced ontology, and the latter is used to align with a second ontology – the ontology for building intelligent environments (DOGONT) – in order to demonstrate the added value derived from BFO by showing how querying the enhanced ifcOWL yields useful additional information.


Author(s):  
C. Clemen ◽  
M. Schröder ◽  
T. Kaiser ◽  
E. Romanschek

Abstract. Digital Terrain Models (DTM) play an important role for digital twins of the built environment. However, if the Building Information Modeling method (BIM) is used, many engineers find it difficult to provide BIM-compliant terrain models. We present a small tool with which classic DTM, which have been created by landsurveyors or geospatial engineers, can be converted into the format Industry Foundation Classes (IFC) in order to be used in openBIM projects. This paper first clarifies the use cases and then goes into detail on possible configurations of the transformation process. With the presented software tool IfcTerrain the user may select different export options concerning IFC object type of the terrain, geometric representation, georeferencing or the annotation with metadata. IfcTerrain is free and open source and was developed in the context of an educational institution.


Author(s):  
L. Gobeawan ◽  
S. E. Lin ◽  
X. Liu ◽  
S. T. Wong ◽  
C. W. Lim ◽  
...  

Abstract. There has been a growing interest in integrating vegetation into the built environment in order to ameliorate the negative effects of increasing urbanisation. In Singapore, government policies encourage the inclusion of skyrise greenery into new and existing buildings. To further streamline workflows, statutory BIM (Building Information Modelling) submissions in architecture, engineering and construction (AEC) industries have been mandated. However, landscape plans are still excluded from these BIM submissions due to the lack of a centralised vegetation database and the absence of a standardised BIM format for landscape architectural submissions. This paper presents a streamlined methodology for creating and using a centralised vegetation library for landscape architects. The workflow leverages off the Industry Foundation Classes (IFC) standard for data exchange regardless of the BIM authoring software used and provides a framework of four operational modules: an expandable and low-maintenance species-level vegetation library, a BIM authoring workflow that allows inclusion of vegetation objects, an IFC interface, and a lightweight 3D vegetation model generator. This paper also showcases a use-case of embedding information-enriched 3D vegetation objects into a simulated landscape plan. The proposed workflow, when adopted in AEC industries, will enable governing agencies to track diverse greening efforts by the industry and to potentially include other measurements such as cooling performance or maintainability.


Author(s):  
D. Guler ◽  
T. Yomralioglu

Abstract. Owing to the increasing existence of multistorey buildings and infrastructures in the built environment, there is a need for three-dimensional (3D) land administration systems (LAS). Regarding this, condominium rights in real-estate properties are needed to be represented as 3D for preventing misinterpretations with regards to who is responsible for or has ownership in which parts of the buildings. Digitalizing the public services appears in current strategies of governments and administrations since it contributes to transparency, speed, and accurateness in the processes. Building permitting that contains obtaining the occupancy permit is a vital one of these public services. With the even-increasing adaptation of Building Information Modelling (BIM), a whole raft of Building Information Models (BIMs) are created to use in digital building permitting. Thus, a significant opportunity for 3D delineation of condominium rights comes out of the reuse of these BIMs, especially their Industry Foundation Classes (IFC) data. In this sense, this paper puts forward an approach that includes developing the conceptual model to depict condominium rights and linking that model with the IFC schema. The applicability of the approach is demonstrated by using a floor of a simple building. The study shows that IFC-based representation of condominium rights can be beneficial for the transition to 3D LAS in Turkey.


2021 ◽  
pp. 147807712110297
Author(s):  
Oscar Gámez Bohórquez ◽  
William Derigent ◽  
Hind Bril El-Haouzi

This work presents a method for retrieving 3D building contours usable in facade retrofitting projects, which uses a parametric modeling workflow that utilizes a point-cloud slicing method to retrieve such 3D contours. Since current commitments by European governments seek to reduce energy consumption as a means to reduce carbon emissions from building stock by 2050, facade retrofitting appears as an alternative for addressing operational and embedded building emissions. Within such a context, the main contribution of this work consists of a workflow and a 3D reconstruction solution that uses a parametric environment for capturing building topology and bypassing ground-level occlusions. A real case study and a strategy for converting 3D building contours into Industry Foundation Classes entities, directly from the parametric modeling environment, served as a scenario for testing the capabilities of a Grasshopper solution and open new perspectives for this approach.


2021 ◽  
Vol 10 (8) ◽  
pp. 496
Author(s):  
Sara Ait-Lamallam ◽  
Reda Yaagoubi ◽  
Imane Sebari ◽  
Omar Doukari

Open Building Information Modelling (OpenBIM) is a collaborative project management process. Its application to road infrastructures is currently limited. OpenBIM standards for infrastructure are still under development. One of these standards is the Industry Foundation Classes (IFC), which is a data architecture for modelling infrastructure projects. The current and upcoming releases of IFCRoad focus on structuring data for the design and construction phases of an infrastructure’s lifecycle. Semantics of the O&M process phase are not fully integrated within these standards. This paper proposes an extension of the IFC schema to enrich this standard with semantics inherent in the O&M phase of road infrastructures. This extension, based on IFCInfra4OM ontology, allows the OpenBIM process to be fully applied to road infrastructures. Its implementation on a case study relative to the A7 Agadir–Marrakech Highway in Morocco enables, on the one hand, analysis and compliance with O&M management requirements on the basis of a single container: the IFC-BIM-based model. On the other hand, it allows comparison of the OpenBIM process with that of ClosedBIM for the integration of O&M data into BIM for a road infrastructure.


2021 ◽  
Vol 39 ◽  
pp. 102251
Author(s):  
Xin Lan ◽  
Jie Cao ◽  
Guonian Lv ◽  
Liangchen Zhou

Author(s):  
W. Wahbeh

Abstract. In this paper, some outcomes of a research project which aims to introduce automation to speed up modelling of architectural spaces based on point clouds are presented. The main objective of the research is to replace some manual parametric modelling steps with automatic processes to obtain editable models in BIM-ready software and not to generate non-parametric IFC (Industry Foundation Classes) models. An approach of automation using visual programming for interior wall modelling based on point clouds is presented. The pipeline and the different concepts represented in this paper are applicable using different programming languages but here the use of Rhinoceros as a modelling software and its open-source visual programming extension "Grasshopper" is intentional as it is in common use for parametric modelling and generative design in architectural practice. In this research, it is assumed that there is a predominance of three mutually orthogonal directions of the walls in the interior spaces to be analysed, which is the case of most indoor spaces.


2021 ◽  
Vol 10 (6) ◽  
pp. 362
Author(s):  
Junxiang Zhu ◽  
Peng Wu

Previous geo-referencing approaches for building information modeling (BIM) models can be problematic due to: (a) the different interpretations of the term ‘geo-referencing’, (b) the insufficient consideration of the placement hierarchy of the industry foundation classes (IFCs), and (c) the misunderstanding that a common way to embed spatial reference information for IFC is absent. Therefore, the objective of this study is to (1) clarify the meaning of geo-referencing in the context of BIM/GIS data integration, and (2) develop a common geo-referencing approach for IFC. To achieve the goal, a systematic and thorough investigation into the IFC standard was conducted to assess the geo-referencing capability of IFC. Based on the investigation, a geo-referencing approach was established using IFC entities that are common in different IFC versions, which makes the proposed approach common to IFC. Such a geo-referencing approach supports automatic geo-referencing that would facilitate the use of BIM models in GIS, e.g., for the construction of digital twins.


Sign in / Sign up

Export Citation Format

Share Document