Construction of Energy Internet System and Research on its Key Problems

2010 ◽  
Vol 121-122 ◽  
pp. 569-573 ◽  
Author(s):  
Chuan Hui Zhao ◽  
Ying Sun ◽  
Ke Jun Li

Since traditional power is non-renewable and unfriendly to environment, renewable energy power which overcomes defects of traditional energy will gradually replace the conventional thermal power. Based on the utilization problem of renewable energy in Smart Grid, this paper builds an Energy Internet which supports real-time, high-speed, two-way transmission of power data and more renewable energy. The Energy Internet achieves reliable two-way transmission of power and realizes intelligent management of the grid. This paper proposes the concept and characteristics of the Energy Internet and completes the design of the Energy Internet network structure and system components. Key issues, such as Renewable Energy Management System, energy storage devices, will be discussed, and finally the paper will point out the direction for further research.

2013 ◽  
Vol 768 ◽  
pp. 3-8 ◽  
Author(s):  
M. Venmathi ◽  
R. Ramaprabha

This paper presents the comparative dynamic analysis of full bridge and half bridge three port dc-dc converter topology interfacing the renewable energy sources along with the energy storage devices. The three port converter comprises the active bridge circuit and the three winding transformer. It uses single power conversion stage with high frequency link to control power flow between the batteries, load and the renewable energy sources. The power flow between the ports is controlled by phase shifting the square wave outputs of the active bridges in combination with pulse width modulation (PWM) technique. The analysis reveals that the battery discharges when the source is not sufficient to supply the load and it was charged when the source alone is capable of supplying the load. Hence there is a bidirectional power flow in the storage port when there is a transition in the source.


Author(s):  
Manikandan Kandasamy ◽  
Surjit Sahoo ◽  
Saroj K Nayak ◽  
Brahmananda Chakraborty ◽  
Chandra Sekhar Rout

Supercapacitors are widely accepted as one of the energy storage devices in the realm of the sustainable and renewable energy storage world. Supercapacitors emerge as good alternate for traditional capacitors...


Author(s):  
Mykhailo Syvenko ◽  
Oleksandr Miroshnyk

A detailed substantiation of the use of electric energy storage devices in the presence of generators on renewable energy sources in the power supply system is given. The dependence of the storage parameters on the composition and priority of generation in the system is investigated. The solution of the problem of determining the parameters of electricity storage devices by means of purposeful simulation of generation parameters is considered. The results of the choice of power and capacity of the energy storage using technical and economic indicators are shown. Optimal parameters of electric energy storage devices as one of the most important means of ensuring the activity of isolated power supply systems together with selection of generating devices are determined. The results of calculations of capacity of renewable energy sources in isolated power supply systems in combination with classical energy sources are given. The necessity of using the principle of activity of the distribution electric network and the possibility of its realization is demonstrated. The optimal storage capacity as a function of the share of renewable generation, the non-integrated energy produced by renewable sources and the total storage capacity are plotted for several isolated systems. The main points of the used model of the power supply system of isolated networks are given. In the studied isolated power supply systems, wind power plants and solar power plants, which have significant unpredictability of generation, are used as generation based on renewable energy sources. The problem of undersupply of electricity to the grid by stepwise increase of generation is analysed. The results of the multi-step selection of power and energy consumption of electricity storage are determined by technical criteria.


2019 ◽  
Vol 7 (41) ◽  
pp. 6355-6361 ◽  
Author(s):  
Zhen Tian ◽  
Wonseok Hwang ◽  
Young Jo Kim

Recent research advances in charge-conducting materials have enabled the transformation of the naturally-occurring materials into crucial components in many technologies, including renewable energy storage devices or bioelectronics.


Author(s):  
Shabir Ahmad Akhoon ◽  
Ashaq Hussain Sofi ◽  
Rayees Ahmad Khan ◽  
Ab. Mateen Tantray ◽  
Seemin Rubab

Renewable energy resources have been investigated as alternatives to fossil fuels. Though the energy density of these renewable sources is not comparable to the fossil fuels, their abundance make them highly interesting. There are three main steps in the renewable energy utilization: harvesting, conversion, and storage. Thus, after harvesting renewable energy, storing this energy is an important aspect for its large-scale end use. Considering the fact that the energy is a basic need for life on earth, there has been a strong scientific temperament towards the renewable energy utilization. The electrical energy storage maintains the key to promote the use of renewable energy. Among the storage devices, the rechargeable lithium ion batteries (LIBs) are the most promising energy storage devices. Among various cathodes proposed for LIBs, the most promising one is the spinel lithium manganese oxide (LiMn2O4). Its non-toxicity, low cost, abundance, and ease of synthesis, besides being environmentally friendly, make it suitable for next generation green LIBs.


Author(s):  
Tian Zhao ◽  
Qun Chen

In this contribution we introduced an integrated energy system consists of thermal power plants, combined heat-power (CHP) plants and wind power plants, and aimed to supply electricity and heat to users simultaneously. A large-scale battery, a TES device and heat transfer devices are included also. During the operation time of the battery, the TES device stores the generated heat and meanwhile supplies heat to users. Applying the power flow method, the electro-thermal analogy and the entransy dissipation-based thermal resistance method, we constructed the power flow model of the system. Besides, we optimized the system aimed to minimize wind curtailments. Optimization results presented for a typical day the system reduces wind curtailment percentage from 40.63 % to 13.70 % and supply 5% heat load. Besides, the operation strategy of the battery is to charge at night and discharge in the day.


2011 ◽  
Vol 59 (4) ◽  
pp. 475-483 ◽  
Author(s):  
A. Tomaszuk ◽  
A. Krupa

High efficiency high step-up DC/DC converters - a reviewThe renewable energy sources such as PV modules, fuel cells or energy storage devices such as super capacitors or batteries deliver output voltage at the range of around 12 to 70 VDC. In order to connect them to the grid the voltage level should be adjusted according to the electrical network standards in the countries. First of all the voltage should be stepped up to sufficient level at which the DC/AC conversion can be performed to AC mains voltage requirements. Overall performance of the renewable energy system is then affected by the efficiency of step-up DC/DC converters, which are the key parts in the system power chain. This review is focused on high efficiency step-up DC/DC converters with high voltage gain. The differentiation is based on the presence or lack of galvanic isolation. A comparison and discussion of different DC/DC step-up topologies will be performed across number of parameters and presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document