High efficiency high step-up DC/DC converters - a review

2011 ◽  
Vol 59 (4) ◽  
pp. 475-483 ◽  
Author(s):  
A. Tomaszuk ◽  
A. Krupa

High efficiency high step-up DC/DC converters - a reviewThe renewable energy sources such as PV modules, fuel cells or energy storage devices such as super capacitors or batteries deliver output voltage at the range of around 12 to 70 VDC. In order to connect them to the grid the voltage level should be adjusted according to the electrical network standards in the countries. First of all the voltage should be stepped up to sufficient level at which the DC/AC conversion can be performed to AC mains voltage requirements. Overall performance of the renewable energy system is then affected by the efficiency of step-up DC/DC converters, which are the key parts in the system power chain. This review is focused on high efficiency step-up DC/DC converters with high voltage gain. The differentiation is based on the presence or lack of galvanic isolation. A comparison and discussion of different DC/DC step-up topologies will be performed across number of parameters and presented in this paper.

2013 ◽  
Vol 768 ◽  
pp. 3-8 ◽  
Author(s):  
M. Venmathi ◽  
R. Ramaprabha

This paper presents the comparative dynamic analysis of full bridge and half bridge three port dc-dc converter topology interfacing the renewable energy sources along with the energy storage devices. The three port converter comprises the active bridge circuit and the three winding transformer. It uses single power conversion stage with high frequency link to control power flow between the batteries, load and the renewable energy sources. The power flow between the ports is controlled by phase shifting the square wave outputs of the active bridges in combination with pulse width modulation (PWM) technique. The analysis reveals that the battery discharges when the source is not sufficient to supply the load and it was charged when the source alone is capable of supplying the load. Hence there is a bidirectional power flow in the storage port when there is a transition in the source.


Author(s):  
Mykhailo Syvenko ◽  
Oleksandr Miroshnyk

A detailed substantiation of the use of electric energy storage devices in the presence of generators on renewable energy sources in the power supply system is given. The dependence of the storage parameters on the composition and priority of generation in the system is investigated. The solution of the problem of determining the parameters of electricity storage devices by means of purposeful simulation of generation parameters is considered. The results of the choice of power and capacity of the energy storage using technical and economic indicators are shown. Optimal parameters of electric energy storage devices as one of the most important means of ensuring the activity of isolated power supply systems together with selection of generating devices are determined. The results of calculations of capacity of renewable energy sources in isolated power supply systems in combination with classical energy sources are given. The necessity of using the principle of activity of the distribution electric network and the possibility of its realization is demonstrated. The optimal storage capacity as a function of the share of renewable generation, the non-integrated energy produced by renewable sources and the total storage capacity are plotted for several isolated systems. The main points of the used model of the power supply system of isolated networks are given. In the studied isolated power supply systems, wind power plants and solar power plants, which have significant unpredictability of generation, are used as generation based on renewable energy sources. The problem of undersupply of electricity to the grid by stepwise increase of generation is analysed. The results of the multi-step selection of power and energy consumption of electricity storage are determined by technical criteria.


2021 ◽  
Vol 294 ◽  
pp. 01004
Author(s):  
Sonja Kallio ◽  
Monica Siroux

To reduce carbon and greenhouse gas emissions, the more efficient and environmentally friendly energy production in the building sector is required. The deployment of renewable energy based microcogeneration units in the decentralized hybrid energy systems is a part of the solution. The micro combined heat and power (micro-CHP), or co-generation, units produce simultaneously heat and electricity from a single fuel source at high efficiency and close to the consumption point. These units offer significant benefits: reduced primary energy consumption, reduced CO2 emissions, and avoidance of distribution losses due to central plant and network construction. The objective of this paper is to present a review of available renewable energy based micro-CHP systems and to focus on the biomass and solar based conversion devices. Finally, a novel hybrid renewable energy system is presented by coupling renewable energy sources, such as solar and biomass for micro-CHP.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2655
Author(s):  
Ioannis Skouros ◽  
Athanasios Karlis

Currently, environmental and climate change issues raise a lot of concerns related to conventional vehicles and renewable energy generation methods. Thus, more and more researchers around the world focus on the development and deployment of Renewable Energy Sources (RES). Additionally, due to the technological advancements in power electronics and electrical batteries, Electrical Vehicles (EVs) are becoming more and more popular. In addition, according to the Vehicle-to-Grid (V2G) operation, the EV batteries can provide electrical energy to the power grid. In this way, many ancillary services can be provided. A Direct Current (DC) nanogrid can be composed by combining the aforementioned technologies. Nanogrids present high efficiency and provide a simple interaction with renewable energy sources and energy storage devices. Firstly, the present study describes the design considerations of a DC nanogrid as well as the control strategies that have to be applied in order to make the V2G operation feasible. Furthermore, the provision of voltage regulation toward the power grid is investigated though the bidirectional transfer of active and reactive power between the DC nanogrid and the power grid. Afterwards, the voltage regulation techniques are applied in an Alternating Current (AC) radial distribution grid are investigated. The proposed system is simulated in Matlab/Simulink software and though the simulation scenarios the impact of the voltage regulation provided by the DC nanogrid is investigated.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3584
Author(s):  
Hossein Gholizadeh ◽  
Reza Sharifi Shahrivar ◽  
Mir Hashemi ◽  
Ebrahim Afjei ◽  
Saman A. Gorji

We designed and implemented a single-switch step-up DC-DC converter based on cascaded boost and Luo converters. The proposed converter demonstrated a quadratic voltage gain and a high efficiency, which makes it suitable for renewable energy applications, where a high voltage gain ratio is desired without imposing a high number of bulky items or employing a high duty cycle of the active switches. This converter benefits from the continuity of the input current waveform, which equips the maximum utilisation of renewable energy sources. While a transformer-less high voltage-gain was achieved, the voltage and current stresses of the power switch and diodes were kept low in comparison with the existing quadratic DC-DC converters. We analysed the converter in both continuous and discontinuous conduction modes. A non-ideal model of components was considered for power loss and efficiency calculations and comparisons. Finally, the simulation results were extracted with PLECS and validated with experiments on a 120 W prototype.


2015 ◽  
Vol 4 (5) ◽  
Author(s):  
Apparao M. Rao

AbstractOur increasing energy demands have spurred a rigorous search for renewable energy sources to reduce our dependence on fossil fuels. However, efficient use of renewable energy is possible only with advances in both energy generation and storage. Today’s batteries and capacitors, which are the main energy storage devices, cannot meet the world’s demand for combined power and energy densities. To enhance the viability of such energy storing devices, the Clemson Nanomaterials Center (CNC) has developed a mix of scalable processes for carbon nanotube-based hybrid electrodes that show promise as a cost-effective alternative to standard activated carbon-based electrodes. Working together with industrial partners, CNC has fabricated supercapacitors with energy and power densities in the range of ~11–35 Wh/kg and ~1.2–9 W/kg, respectively. Although this research development is transformative, further studies to optimize the separator and electrolyte technologies are needed to maximize both the energy and power density in a single device.


2020 ◽  
Vol 10 (12) ◽  
pp. 4061 ◽  
Author(s):  
Naoto Takatsu ◽  
Hooman Farzaneh

After the Great East Japan Earthquake, energy security and vulnerability have become critical issues facing the Japanese energy system. The integration of renewable energy sources to meet specific regional energy demand is a promising scenario to overcome these challenges. To this aim, this paper proposes a novel hydrogen-based hybrid renewable energy system (HRES), in which hydrogen fuel can be produced using both the methods of solar electrolysis and supercritical water gasification (SCWG) of biomass feedstock. The produced hydrogen is considered to function as an energy storage medium by storing renewable energy until the fuel cell converts it to electricity. The proposed HRES is used to meet the electricity demand load requirements for a typical household in a selected residential area located in Shinchi-machi in Fukuoka prefecture, Japan. The techno-economic assessment of deploying the proposed systems was conducted, using an integrated simulation-optimization modeling framework, considering two scenarios: (1) minimization of the total cost of the system in an off-grid mode and (2) maximization of the total profit obtained from using renewable electricity and selling surplus solar electricity to the grid, considering the feed-in-tariff (FiT) scheme in a grid-tied mode. As indicated by the model results, the proposed HRES can generate about 47.3 MWh of electricity in all scenarios, which is needed to meet the external load requirement in the selected study area. The levelized cost of energy (LCOE) of the system in scenarios 1 and 2 was estimated at 55.92 JPY/kWh and 56.47 JPY/kWh, respectively.


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 682
Author(s):  
Zita Szabó ◽  
Viola Prohászka ◽  
Ágnes Sallay

Nowadays, in the context of climate change, efficient energy management and increasing the share of renewable energy sources in the energy mix are helping to reduce greenhouse gases. In this research, we present the energy system and its management and the possibilities of its development through the example of an ecovillage. The basic goal of such a community is to be economically, socially, and ecologically sustainable, so the study of energy system of an ecovillage is especially justified. As the goal of this community is sustainability, potential technological and efficiency barriers to the use of renewable energy sources will also become visible. Our sample area is Visnyeszéplak ecovillage, where we examined the energy production and consumption habits and possibilities of the community with the help of interviews, literature, and map databases. By examining the spatial structure of the settlement, we examined the spatial structure of energy management. We formulated development proposals that can make the community’s energy management system more efficient.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2045
Author(s):  
Pierpaolo Garavaso ◽  
Fabio Bignucolo ◽  
Jacopo Vivian ◽  
Giulia Alessio ◽  
Michele De Carli

Energy communities (ECs) are becoming increasingly common entities in power distribution networks. To promote local consumption of renewable energy sources, governments are supporting members of ECs with strong incentives on shared electricity. This policy encourages investments in the residential sector for building retrofit interventions and technical equipment renovations. In this paper, a general EC is modeled as an energy hub, which is deemed as a multi-energy system where different energy carriers are converted or stored to meet the building energy needs. Following the standardized matrix modeling approach, this paper introduces a novel methodology that aims at jointly identifying both optimal investments (planning) and optimal management strategies (operation) to supply the EC’s energy demand in the most convenient way under the current economic framework and policies. Optimal planning and operating results of five refurbishment cases for a real multi-family building are found and discussed, both in terms of overall cost and environmental impact. Simulation results verify that investing in building thermal efficiency leads to progressive electrification of end uses. It is demonstrated that the combination of improvements on building envelope thermal performances, photovoltaic (PV) generation, and heat pump results to be the most convenient refurbishment investment, allowing a 28% overall cost reduction compared to the benchmark scenario. Furthermore, incentives on shared electricity prove to stimulate higher renewable energy source (RES) penetration, reaching a significant reduction of emissions due to decreased net energy import.


Sign in / Sign up

Export Citation Format

Share Document