Mathematical Model of Spiral Bevel Gears Manufactured by Generating Line Method

2010 ◽  
Vol 154-155 ◽  
pp. 103-108
Author(s):  
Zhao Jun Yang ◽  
Yan Kun Wang ◽  
Li Nan Li ◽  
Xue Cheng Zhang

Generating line method for designing and manufacturing spiral bevel gears is proposed in this paper. The tooth surface of spiral bevel gears produced by generating line method is formed by exact spherical involutes, the mathematical model to describe tooth surface has been derived based on gear meshing theory and the cutting motion. This study can provide some fundamentals for manufacturing and contact analysis of spherical involutes spiral bevel gears.

2013 ◽  
Vol 694-697 ◽  
pp. 503-506 ◽  
Author(s):  
Zheng Lin ◽  
Li Gang Yao

The mathematical model and 3D modeling of involute spiral bevel gears for nutation drive are considered. The basic tooth profile of involute is composed of involute curve and dedendum transition curve, and the equations have been established. The mathematical model of crown gear with involute profile is obtained, and then the mathematical models of the involute spiral bevel gears are developed. The tooth surface modeling of involute spiral bevel gear is proposed, and the 3D modeling of the involute spiral bevel gear for nutation drive is illustrated.


Author(s):  
Rulong Tan ◽  
Bingkui Chen ◽  
Changyan Peng ◽  
Dong Liang ◽  
Dongyun Xiang

This paper aims at obtaining the mathematical model of the general spiral bevel gears of local bearing contact from spatial conjugate curve theory. Differential geometry and gearing kinematics are introduced to derive this model. Meshing-correctly conditions are set in the theoretical derivation process. The final model is represented in the form of equations and inequalities. According to the arguments in this paper, a process of designing the tooth surface of spiral bevel gears of local bearing is proposed. Based on this process, the numerical example of a pair of these gears with specific profiles is represented by applying the finite element analysis. Results show that the magnitudes of the deviations between theoretical contact points and real contact points are small. Therefore, the results agree with the mathematical model of the spiral bevel gears of local bearing contact in this paper.


Author(s):  
Zhang-Hua Fong ◽  
Chung-Biau Tsay

Abstract Kinematical optimization and sensitivity analysis of circular-cut spiral bevel gears are investigated in this paper. Based on the Gleason spiral bevel gear generator and EPG test machine, a mathematical model is proposed to simulate the tooth contact conditions of the spiral bevel gear set. All the machine settings and assembly data are simulated by simplified parameters. The tooth contact patterns and kinematic errors are obtained by the proposed mathematical model and the tooth contact analysis techniques. Loaded tooth contact patterns are obtained by the differential geometry and the Hertz contact formulas. Tooth surface sensitivity due to the variation of machine settings is studied. The corrective machine settings can be calculated by the sensitive matrix and the linear regression method. An optimization algorithm is also developed to minimize the kinematic errors and the discontinuity of tooth meshing. According to the proposed studies, an improved procedure for development of spiral bevel gears is suggested. The results of this paper can be applied to determine the sensitivity and precision requirements in manufacturing, and improve the running quality of the spiral bevel gears. Two examples are presented to demonstrate the applications of the optimization model.


1992 ◽  
Vol 114 (3) ◽  
pp. 498-506 ◽  
Author(s):  
Zhang-Hua Fong ◽  
Chung-Biau Tsay

Kinematical optimization and sensitivity analysis of circular-cut spiral bevel gears are investigated in this paper. Based on the Gleason spiral bevel gear generator and EPG test machine, a mathematical model is proposed to simulate the tooth contact conditions of the spiral bevel gear set. All the machine settings and assembly data are simulated by simplified parameters. The tooth contact patterns and kinematic errors are obtained by the proposed mathematical model and the tooth contact analysis techniques. Loaded tooth contact patterns are obtained by the differential geometry and the Hertz contact formulas. Tooth surface sensitivity due to the variation of machine settings is studied. The corrective machine settings can be calculated by the sensitive matrix and the linear regression method. An optimization algorithm is also developed to minimize the kinematic errors and the discontinuity of tooth meshing. According to the proposed studies, an improved procedure for development of spiral bevel gears is suggested. The results of this paper can be applied to determine the sensitivity and precision requirements in manufacturing, and improve the running quality of the spiral bevel gears. Two examples are presented to demonstrate the applications of the optimization model.


2011 ◽  
Vol 101-102 ◽  
pp. 708-712 ◽  
Author(s):  
Zheng Lin ◽  
Li Gang Yao

The general mathematical model of internal meshing spiral bevel gears for nutation drive is studied. Based on conventional enveloping theory and transmission principle, the meshing of two spiral bevel gears in nutation drive was substituted by the meshing of an imaginary rotating crown gear engaging with the external and internal bevel gear respectively. The general mathematical model of crown gear was established. Then the general mathematical model of internal meshing spiral bevel gears is obtained by matrix transformation, which is suitable for a variety of gear tooth profiles. Finally, the mathematical model and 3D modeling of double circular-arc spiral bevel gears are developed.


1991 ◽  
Vol 113 (2) ◽  
pp. 174-181 ◽  
Author(s):  
Z. H. Fong ◽  
Chung-Biau Tsay

A complete tooth geometry of the circular-cut spiral bevel gears has been mathematically modeled. The mathematical model has been divided into several independent modules, each representing an individual kinematic relation or tool-setting, with examples included. A comparison with the spiraloid model has also been made in this paper. The mathematical model can be applied to simulate and calculate the tooth profiles for the Duplex Method, Helical Duplex Method, Formate Method, and Modified Roll Method for circular-cut spiral bevel gears. It can also be applied to the computer numerical controlled (CNC) machining, computer-aided finite element stress analysis, and tooth contact analysis (TCA) for the spiral bevel gear.


2014 ◽  
Vol 60 (2) ◽  
pp. 93-105 ◽  
Author(s):  
Jixin Wang ◽  
Long Kong ◽  
Bangcai Liu ◽  
Xinpeng Hu ◽  
Xiangjun Yu ◽  
...  

2021 ◽  
Author(s):  
GuangLei Liu ◽  
Weidong Yan ◽  
Yao Liu

Abstract Real tooth contact analysis of spiral bevel gears is based on the original tooth surface grids (OTSG) formed by coordinate measuring machine (CMM). Since the size of OTSG is smaller than the tooth surface, it is sometimes impossible to get full meshing information. Reverse engineering is a way to solve the problem. The basic idea is to expand OTSG to the tooth surface boundary by reversing the manufacturing parameters of the spiral bevel gear drive. Thus a generalized reversing objective is set up for both of the gear and the pinion, which is the summation of deviations of all nodes between OTSG and corresponding computational tooth surface grids (CTSG) expressed by manufacturing parameters. The gear manufacturing parameters are reversed by observing duplex method. The pinionmanufacturing parameters are reversed by attempting the meshing behavior taken as input to local synthesis with modified roll motion. The initial meshing behavior is approximately ascertained by discrete tooth contact analysis based on OTSG, and meshing behavior at the mean contact point is figured out by interpolation method for function of transmission errors and contact path. Having reversed the manufacturing parameters, OTSG is expanded to the tooth surface boundary and real tooth contact analysis is conducted. A zero bevel gear drive of an aviation engine was employed to demonstrate the validity of the proposed methodology. The proposed method makes the real tooth contact analysis practical and provides prospect to improve meshing behavior more precisely.


2014 ◽  
Vol 1 (1) ◽  
pp. 27-36 ◽  
Author(s):  
Shuqian Fan ◽  
Jinsong Zou ◽  
Mingquan Shi

Abstract Similar to the essential components of many mechanical systems, the geometrical properties of the teeth of spiral bevel gears greatly influence the kinematic and dynamic behaviors of mechanical systems. Logarithmic spiral bevel gears show a unique advantage in transmission due to their constant spiral angle property. However, a mathematical model suitable for accurate digital modeling, differential geometrical characteristics, and related contact analysis methods for tooth surfaces have not been deeply investigated, since such gears are not convenient in traditional cutting manufacturing in the gear industry. Accurate mathematical modeling of the tooth surface geometry for logarithmic spiral bevel gears is developed in this study, based on the basic gearing kinematics and spherical involute geometry along with the tangent planes geometry; actually, the tooth surface is a parametric surface defined on a parallelogrammic domain. Equivalence proof of the tooth surface geometry is then given in order to greatly simplify the mathematical model. As major factors affecting the lubrication, surface fatigue, contact stress, wear, and manufacturability of gear teeth, the differential geometrical characteristics of the tooth surface are summarized using classical fundamental forms. By using the geometrical properties mentioned, manufactura-bility (and its limitation in logarithmic spiral bevel gears) is analyzed using precision forging and multi-axis freeform milling, rather than classical cradle-type machine tool based milling or hobbing. Geometry and manufacturability analysis results show that logarithmic spiral gears have many application advantages, but many urgent issues such as contact tooth analysis for precision plastic forming and multi-axis freeform milling also need to be solved in a further study.


2018 ◽  
Vol 10 (7) ◽  
pp. 168781401879065 ◽  
Author(s):  
Shuai Mo ◽  
Shengping Zhu ◽  
Guoguang Jin ◽  
Jiabei Gong ◽  
Zhanyong Feng ◽  
...  

High-speed heavy-load spiral bevel gears put forward high requirement for flexural strength; shot peening is a technique that greatly improves the bending fatigue strength of gears. During shot peening, a large number of fine pellets bombard the surface of the metal target material at very high speeds and let the target material undergo plastic deformation, at the same time strengthening layer is produced. Spiral bevel gear as the object of being bombarded inevitably brought the tooth surface micro-morphology changes. In this article, we aim to reveal the effect of microtopography of tooth shot peening on gear lubrication in spiral bevel gear, try to establish a reasonable description of the microscopic morphology for tooth surface by shot peening, to reveal the lubrication characteristics of spiral bevel gears after shot peening treatment based on the lubrication theory, and do comparative research on the surface lubrication characteristics of a variety of microstructures.


Sign in / Sign up

Export Citation Format

Share Document