Creep Stress Analysis of PC Composed Box Girder Bridge with Corrugated Steel Webs

2010 ◽  
Vol 163-167 ◽  
pp. 1987-1990
Author(s):  
Cheng Lin Shan ◽  
Ling Yan

According to the forced load-bearing characteristics of the prestressed concrete girder bridge with corrugated steel webs, the cross-section internal forces and stress redistribution of box-girder were studied under the influence of concrete creep. And the internal force redistribution formula on concrete creep was derived through the establishment of the compatibility equation of bending deformation; the stress redistribution formulas of the top slab and the bottom slab of box-girder at any time were also derived, through the establishment of the compatibility equation of the axial displacement and angular deformation of the top slab and the bottom slab of box-girder under the influence of concrete creep at any time. These show that the creep stress is only related to the box height and it’s the geometric properties of top slab and bottom slab concrete section, but not to the steel web’s size.

2014 ◽  
Vol 501-504 ◽  
pp. 1199-1203 ◽  
Author(s):  
Ji Xin Yang ◽  
Pei Liu ◽  
Ming Chao Yang

The concrete creep effect is a peculiar phenomenon of concrete material, it has a significant effect on the deformation and internal force redistribution of concrete member, besides, it may cause the loss of prestress , it may have serious consequences especially on complex structure such as long-span bridges. So it must be considered in bridge design and construction. Based on the subject of CYSG deformation monitoring and 32m precast PC simply supported box girder, the method of creep test has been researched and determined in this paper firstly, then the laws of the development of the creep has been summarized, and the influencing factors of concrete creep has been concluded. Using the finite element software ANSYS and the APDL language, theoretical analysis of creep has been carried on in this paper. In conclusion, This paper analyzed the influencing factors of concrete creep and provided the basis for long-term deformation control of creep by comparing the theoretical results with the experimental data.


2010 ◽  
Vol 163-167 ◽  
pp. 3551-3554
Author(s):  
Wei Peng ◽  
Zhi Xiang Zha

This template Based on cracks observation and finite element analysis of real engineering projects as well as bridge load test after reinforcement, causes and types of cracks in prestressed concrete box girder bridges and treating measurements are systematically studied. The results obtained from the calculation are presented to demonstrate the effect of sensitive factors, such as arrangement of longitudinal prestressed tendons, the magnitude of vertical prestressed force, temperature gradient, etc. The results show that the arrangement of longitudinal prestressed tendons and the magnitude of vertical prestressed force take key roles in cracks control of box girder webs. Lots of treating measurements are presented in accordance with different types of cracks, some of them are applied to a reinforcement engineering of a long span pretressed concrete continuous box girder bridge with cracks. Load test after reinforcement of the bridge demonstrates the reasonability of the treating measurements. Several design recommendations and construction measures about reinforcements and some sensitive factors mentioned above are proposed to control cracks.


2017 ◽  
Vol 1 (2) ◽  
Author(s):  
Wang Jie

Abstract: The PC box girder Bridge with corrugated steel web, as a new kind of bridge structure, has different mechanical properties from that of the ordinary concrete box girder bridge. Due to the late development of the corrugated steel web pre-stressed box girder structure, the domestic experts have made little research on the transverse load distribution of PC box Girder Bridge with corrugated steel webs. Whether the method of calculating the transverse distribution coefficient in the classical box girder theory can be applied to the corrugated steel web composite box girder and how to further improve the calculation theory and method of the transverse load distribution of the steel box girder bridge need urther study. method of the transverse load distribution of the steel box girder bridge need further study.Based on the "traditional rigid jointed process and the programming ideas of the transverse distribution coefficient of corrugated steel web composite box girder of the "modified rigid jointed beam method".beam method" and the existing research, this paper proposes the "modified rigid-jointed beam method" in combination with the specific internal force distribution of corrugated steel web composite box girder. The computational scheme and formula of mechanics, the calculation process and the programming ideas of the transverse distribution coefficient of corrugated steel web composite box girder of the "modified rigid jointed beam method".


2010 ◽  
Vol 163-167 ◽  
pp. 2369-2375 ◽  
Author(s):  
Ming Yuan ◽  
Dong Huang Yan

The stress state of finished bridge and service stage is influenced by various closure schemes in cantilever construction of multi-span prestressed concrete box-girder bridge. Two typical bridges—multi-span prestressed concrete continuous rigid frame bridge and girder bridge are investigated, The stress state in different closure schemes are analyzed using finite element(FE) analysis. Meanwhile, compared the healthy monitoring data, it has been found that taking the closure sequence from side span to middle span in cantilever construction of multi-span prestressed concrete box-girder bridge can lower stress of girder and pier in finished bridge stage, as well as reducing deformation of girder in service stage. Hence, the closure sequence from side span to middle span is more suitable for cantilever construction of multi-span prestressed concrete box-girder bridge.


2012 ◽  
Vol 204-208 ◽  
pp. 2209-2213 ◽  
Author(s):  
Ya Jiang Du ◽  
Bing Wen Yang ◽  
Shui Wan

In the construction of prestressed concrete(PC) box-girder bridge with corrugated steel webs used cast-in-place cantilever method, the key component-corrugated steel webs are fabricated in factory first and then transported to the construction site. Because of the low out-of plane stiffness, corrugated steel webs are easy to deform in the construction, which brings many difficulties for construction. The precision of installing the corrugated steel web has a direct effect on the cross-section shape of the box-girder. So it is a key step to monitor the orientation and installation of corrugated steel web during construction. Based on the experience of some PC box-girder bridges with corrugated steel webs having been built, a method to control the installation accuracy of corrugated steel webs is proposed and some quality assurance measures are introduced in order to ensure the accuracy, reliability and security of the installation of corrugated steel web. The method can be taken as a reference in the construction of this kind of bridge.


Sign in / Sign up

Export Citation Format

Share Document