Operating Modes of the Solar Assisted Drainwater System for Ground Source Heat Pump

2010 ◽  
Vol 171-172 ◽  
pp. 67-72
Author(s):  
Yong Lan Yin ◽  
Qing Gao ◽  
Bai Fa Zhu ◽  
Ming Li

To extend the area in applications of solar heat pump and drainwater heat recovery, the gravity film exchanger was employed to establish the solar assisted drainwater heat pump system. In this paper, two gravity film exchangers were assembled in the hybrid heat pump system to discuss the effect of water distribution ratio in two exchangers on the electric power complement and outlet water temperature of the condenser. The technology of Matlab/Simulink was used in modeling and simulations of the system by the performance curves and performance parameters of the corresponding system components. In the designing processes, the dynamic characteristics can be predicted, and the optimal operating conditions can also be concluded that appropriate water distribution ratio should be selected respectively for higher outlet temperature of the condenser or lower electric power complement.

Author(s):  
Zhen Tong ◽  
Yiming Guan ◽  
Tingtao Cao ◽  
Yongming Ji ◽  
Songtao Hu ◽  
...  

2015 ◽  
Vol 149 ◽  
pp. 125-132 ◽  
Author(s):  
Carsen J. Banister ◽  
Michael R. Collins

Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 870 ◽  
Author(s):  
José Villarino ◽  
Alberto Villarino ◽  
I. de Arteaga ◽  
Roberto Quinteros ◽  
Alejandro Alañón

This paper presents an analysis of economic and energy between a ground-coupled heat pump system and other available technologies, such as natural gas, biomass, and diesel, providing heating, ventilation, and air conditioning to an office building. All the proposed systems are capable of reaching temperatures of 22 °C/25 °C in heating and cooling modes. EnergyPlus software was used to develop a simulation model and carry out the validation process. The first objective of the paper is the validation of the numerical model developed in EnergyPlus with the experimental results collected from the monitored building to evaluate the system in other operating conditions and to compare it with other available technologies. The second aim of the study is the assessment of the position of the low enthalpy geothermal system proposed versus the rest of the systems, from energy, economic, and environmental aspects. In addition, the annual heating and cooling seasonal energy efficiency ratio (COPsys) of the ground-coupled heat pump (GCHP) shown is higher than the others. The economic results determine a period between 6 and 9 years for the proposed GCHP system to have lower economic cost than the rest of the systems. The results obtained determine that the GCHP proposed system can satisfy the thermal demand in heating and cooling conditions, with optimal environmental values and economic viability.


2020 ◽  
Vol 182 ◽  
pp. 03004
Author(s):  
Jintian Li ◽  
Yunzhe Ji ◽  
Bo Wang ◽  
Ling Xie

The load properties of underground engineering have an important influence on operating characteristics of ground source heat pump system. It has important reference value for design and operation management that Simulation analyzing operating conditions of ground source heat pump system under dynamic load conditions. It took an underground engineering as an example for dynamic load calculation in the paper, and simulated operating characteristics of ground source heat pump system under three operating conditions. The calculation results show that the engineering maintenance and management period is conducive to the recovery of soil temperature, and it improves the COP value of the unit. Some measures should be taken to restore soil temperature for long-term continuous operation of underground engineering. The use of heat recovery to make domestic hot water can relieve the problem of soil thermal imbalance to some extent. It is beneficial to improve heat pump unit performance.


Sign in / Sign up

Export Citation Format

Share Document