Application of Neural Network and Particle Swarm Optimization Algorithm in Slope Runoff and Sediment Yield Calculation

2011 ◽  
Vol 201-203 ◽  
pp. 2496-2503
Author(s):  
Jun Huang ◽  
Pu Te Wu ◽  
Xi Ning Zhao ◽  
Juan Wang

Neural network black box model for predicting the slope runoff and sediment yield and two empirical equations for calculating the slope runoff and sediment yield were established with the basis of practical field data of slope runoff and sediment amount by artificial simulated rainfall experiments. In additional, particle swarm optimization algorithm is used to inquire the empirical equation’s unknown parameters based on least square method. And results show that, neural network model might represent the nonlinear relationship between runoff, sediment amount and each impact factor excellently. Furthermore, predicted results are satisfactory and its relative error mean is around 10%. Empirical equations are reasonably and reliable, its relative error mean is less than 20%. These two methods provide an operable means for such intricate research of slope runoff and sediment yield predication and calculation.

Author(s):  
Goran Klepac

Developed neural networks as an output could have numerous potential outputs caused by numerous combinations of input values. When we are in position to find optimal combination of input values for achieving specific output value within neural network model it is not a trivial task. This request comes from profiling purposes if, for example, neural network gives information of specific profile regarding input or recommendation system realized by neural networks, etc. Utilizing evolutionary algorithms like particle swarm optimization algorithm, which will be illustrated in this chapter, can solve these problems.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2873 ◽  
Author(s):  
Dinh Thanh Viet ◽  
Vo Van Phuong ◽  
Minh Quan Duong ◽  
Quoc Tuan Tran

As sources of conventional energy are alarmingly being depleted, leveraging renewable energy sources, especially wind power, has been increasingly important in the electricity market to meet growing global demands for energy. However, the uncertainty in weather factors can cause large errors in wind power forecasts, raising the cost of power reservation in the power system and significantly impacting ancillary services in the electricity market. In pursuance of a higher accuracy level in wind power forecasting, this paper proposes a double-optimization approach to developing a tool for forecasting wind power generation output in the short term, using two novel models that combine an artificial neural network with the particle swarm optimization algorithm and genetic algorithm. In these models, a first particle swarm optimization algorithm is used to adjust the neural network parameters to improve accuracy. Next, the genetic algorithm or another particle swarm optimization is applied to adjust the parameters of the first particle swarm optimization algorithm to enhance the accuracy of the forecasting results. The models were tested with actual data collected from the Tuy Phong wind power plant in Binh Thuan Province, Vietnam. The testing showed improved accuracy and that this model can be widely implemented at other wind farms.


Sign in / Sign up

Export Citation Format

Share Document