Computer-Aided Design and Fabrication of Bio-Mimetic Materials and Scaffold Micro-Structures

2011 ◽  
Vol 213 ◽  
pp. 628-632 ◽  
Author(s):  
Yu Hang Chen ◽  
Joseph Cadman ◽  
Shi Wei Zhou ◽  
Qing Li

Computer-aided design (CAD) has proven effective in enabling novel approaches for tissue engineering applications. This paper demonstrates the applicability of various mathematical methods to design and fabricate bio-mimetic materials via two illustrative examples. Firstly, CAD models of cellular biomaterials that mimic the micro-structure of cuttlefish bone are designed based on the principles of the homogenization method. Secondly, a three-dimensional bi-objective topology optimization approach based upon the inverse homogenization method is used to design scaffold micro-structures with tailored effective stiffness and permeability properties. Consequently, solid free-form fabrication is used to fabricate such cellular bio-mimetic materials, which show a great potential in tissue engineering applications.

2021 ◽  
Vol 111 (11-12) ◽  
pp. 797-802
Author(s):  
Leonhard Alexander Meijer ◽  
Torben Merhofe ◽  
Timo Platt ◽  
Dirk Biermann

In diesem Beitrag wird ein neuer Ansatz zum Erstellen von Maschinenprogrammen zur mikrofrästechnischen Oberflächenstrukturierung vorgestellt und die Anwendung der Prozesskette für ein komplexes, industrielles Verzahnungswerkzeug beschrieben. Durch die Reduzierung des Berechnungsaufwandes in der CAD/CAM (Computer-aided Design & Manufacturing)-Umgebung können die Limitierungen konventioneller Softwarelösungen umgangen und Bearbeitungsprogramme für komplexe Strukturierungsaufgaben effizient erstellt werden.   A new method for generating machine programs for micromilling surface structuring is presented, and the application of the process chain to a complex, industrial gearing die is described. By reducing the computational effort in the CAD/CAM (Computer-aided Design & Manufacturing) environment, the problems of conventional software solutions can be avoided and complex machining programs can be created.


2007 ◽  
Vol 29 (1) ◽  
pp. 20-23
Author(s):  
Jae Nam, Binil Starly and Wei Sun

Computer-aided tissue engineering (CATE) is an evolving, multi-disciplinary field that utilizes the tools of medical image processing, computer-aided design (CAD), computational analysis, multiscale modelling and biomanufacturing for the purposes of tissue engineering. The merging of computation and automation with tissue engineering could have the potential for profound advances in developing tissue replacements and also in better understanding of physiology and pathology at a cellular, tissue, and organ level.


2011 ◽  
Author(s):  
Takahiro Makiyama ◽  
Toshiya Teramae ◽  
Toshimi Sato ◽  
Francisco Chinesta ◽  
Yvan Chastel ◽  
...  

Author(s):  
Stéphane M. Morvan ◽  
Georges M. Fadel

Abstract The current trends towards fully integrated digital design processes depend on the use of physical mockups. Free Form Fabrication extracts data from Computer Aided Design software and transforms them into a tangible reality. Virtual Reality (VR) provides a remarkable complement to these techniques. The system presented responds to the needs to ensure accurate data and quick prototyping by providing visualization and edition of Computer Aided Design files in a Virtual Environment. This paper expands on the use of VR to virtually prototype artifacts represented by .STL files. It describes different techniques to interact with the object in the VE. Besides manipulating the object, various methods to display the triangles generated by tessellation are detailed and ways to correct the files are illustrated.


Author(s):  
Vadim Shapiro ◽  
Igor Tsukanov ◽  
Alex Grishin

The long-standing goal of computer aided design (CAD)/computer aided engineering (CAE) integration demands seamless interfaces between geometric design and engineering analysis/simulation tasks. The key challenge to this integration stems from the distinct and often incompatible roles geometric representations play, respectively, in design and analysis. This paper critically examines and compares known mesh-based and meshfree approaches to CAD/CAE integration, focusing on the basic tasks and components required for building fully integrated engineering applications. For each task, we identify the fundamental requirements and challenges and discuss how they may be met by known techniques and proposed solutions.


2006 ◽  
Vol 129 (2) ◽  
pp. 400-406 ◽  
Author(s):  
R. Molina-Carmona ◽  
A. Jimeno ◽  
R. Rizo-Aldeguer

Background. Tool path generation problem is one of the most complexes in computer aided manufacturing. Although some efficient algorithms have been developed to solve it, their technological dependency makes them efficient in only a limited number of cases. Method of Approach. Our aim is to propose a model that will set apart the geometrical issues involved in the manufacturing process from the purely technology-dependent physical issues by means of a topological system. This system applies methods and concepts used in mathematical morphology paradigms. Thus, we will obtain a geometrical abstraction which will not only provide solutions to typically complex problems but also the possibility of applying these solutions to any machining environment regardless of the technology. Presented in the paper is a method for offsetting any kind of curve. Specifically, we use parametric cubic curves, which is one of the most general and popular models in computer aided design (CAD)/computer aided manufacturing (CAM) applications. Results. The resulting method avoids any constraint in object or tool shape and obtains valid and optimal trajectories, with a low temporal cost of O(n∙m), which is corroborated by the experiments. It also avoids some precision errors that are present in the most popular commercial CAD/CAM libraries. Conclusions. The use of morphology as the base of the formulation avoids self-intersections and discontinuities and allows the system to machine free-form shapes using any tool without constraints. Most numerical and geometrical problems are also avoided. Obtaining a practical algorithm from the theoretical formulation is straightforward. The resulting procedure is simple and efficient.


Sign in / Sign up

Export Citation Format

Share Document