IVECS: An Interactive Virtual Environment for the Correction of .STL Files

Author(s):  
Stéphane M. Morvan ◽  
Georges M. Fadel

Abstract The current trends towards fully integrated digital design processes depend on the use of physical mockups. Free Form Fabrication extracts data from Computer Aided Design software and transforms them into a tangible reality. Virtual Reality (VR) provides a remarkable complement to these techniques. The system presented responds to the needs to ensure accurate data and quick prototyping by providing visualization and edition of Computer Aided Design files in a Virtual Environment. This paper expands on the use of VR to virtually prototype artifacts represented by .STL files. It describes different techniques to interact with the object in the VE. Besides manipulating the object, various methods to display the triangles generated by tessellation are detailed and ways to correct the files are illustrated.

2015 ◽  
Vol 751 ◽  
pp. 293-297
Author(s):  
Bin Feng ◽  
Hai Lian Deng ◽  
Li Ping Yang

This paper will discuss computer-aided design software use in textile design, from the development of computer-aided design applications and home textiles design, software is the core of computer-aided design in textile design, graphic combined with three-dimensional software, building the systematic of home textiles design and computer-aided design to enhance the artistic beauty of textile design. Secondly, introduce the two-dimensional and three-dimensional software application in fabric pattern and textile design. We can see the convenience of computer-aided design, which combines technology and art in one. And from the comparison of plane and solid software, both proposed to build a systematic mutual, for textile design, which is based on the performance requirements and the effect of artistic design, and the theoretical analysis of consumer purchase intention and behavior; and discussing from the beauty of color、 formal and spatial three aspects of computer-aided design to enhance the artistic beauty of textile design.


Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1170
Author(s):  
Giulio Marchesi ◽  
Alvise Camurri Piloni ◽  
Vanessa Nicolin ◽  
Gianluca Turco ◽  
Roberto Di Lenarda

Restorative materials are experiencing an extensive upgrade thanks to the use of chairside Computer-aided design/computer-assisted manufacturing (CAD/CAM) restorations. Therefore, due to the variety offered in the market, choosing the best material could be puzzling for the practitioner. The clinical outcome of the restoration is influenced mainly by the material and its handling than by the fabrication process (i.e., CAD/CAM). Information on the restorative materials performances can be difficult to gather and compare. The aim of this article is to provide an overview of chairside CAD/CAM materials, their classification, and clinically relevant aspects that enable the reader to select the most appropriate material for predictable success.


1995 ◽  
Vol 117 (B) ◽  
pp. 93-100 ◽  
Author(s):  
A. G. Erdman

The current status of computer-aided design of mechanisms is reviewed. The available software is described and several industrial examples are presented to illustrate current trends in the field of linkage design and analysis. Future strategies and CAD environments are also discussed.


1992 ◽  
Vol 8 (02) ◽  
pp. 77-88
Author(s):  
S. Madden ◽  
H. H. Vanderveldt ◽  
J. Jones

Computer Aided Process Planning (CAPP) integrated with Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) will form the basis of engineering/planning systems of the future. These systems will have the capability to operate in a paperless environment and provide highly optimized process operation plans. The WELDEXCELL System is a prototype of such a system for welding in shipyards. The paper discusses three significant computer technology advances which have been in into the WELDEXCELL prototype. First is a computerized system for allowing multiple knowledge sources (expert systems, humans, data systems, etc.) to work together to solve a common problem (the weld plan). This system is called a "blackboard." The second is a methodology for the blackboard to communicate to the human user. This interface includes full interactive graphics fully integrated to CAD as well as data searches and automatic completion of routine engineering tasks. The third is artificial neural networks (ANS's), which are based on biological neural networks (such as the human brain) and which can do neural reasoning tasks about difficult problems. ANS's offer the opportunity to model highly complex multivariable and nonlinear processes (for example, welding) and provide a means for an engineer to quantitatively assess the process and its operation.


2021 ◽  
Vol 111 (11-12) ◽  
pp. 797-802
Author(s):  
Leonhard Alexander Meijer ◽  
Torben Merhofe ◽  
Timo Platt ◽  
Dirk Biermann

In diesem Beitrag wird ein neuer Ansatz zum Erstellen von Maschinenprogrammen zur mikrofrästechnischen Oberflächenstrukturierung vorgestellt und die Anwendung der Prozesskette für ein komplexes, industrielles Verzahnungswerkzeug beschrieben. Durch die Reduzierung des Berechnungsaufwandes in der CAD/CAM (Computer-aided Design & Manufacturing)-Umgebung können die Limitierungen konventioneller Softwarelösungen umgangen und Bearbeitungsprogramme für komplexe Strukturierungsaufgaben effizient erstellt werden.   A new method for generating machine programs for micromilling surface structuring is presented, and the application of the process chain to a complex, industrial gearing die is described. By reducing the computational effort in the CAD/CAM (Computer-aided Design & Manufacturing) environment, the problems of conventional software solutions can be avoided and complex machining programs can be created.


2016 ◽  
Vol 823 ◽  
pp. 396-401
Author(s):  
Adrian Cuzmoş ◽  
Dorian Nedelcu ◽  
Constantin Viorel Câmpian ◽  
Cristian Fănică ◽  
Ana Maria Budai

The paper presents a method developed and used by the CCHAPT researchers for the graphic plotting of the index tests results for hydraulic turbines, the comparison of the efficiency curves resulted from testing to those obtained by the model transposition [1] i.e. the determination and comparison of the existing combinatory cam with that obtained from tests.The method presented in the paper was born from the need for processing and presenting the results of index tests within the shortest delay and eliminating the errors that might occur in the results plotting.


PLoS ONE ◽  
2019 ◽  
Vol 14 (12) ◽  
pp. e0226322
Author(s):  
Nelson Massanobu Sakaguti ◽  
Mário Marques Fernandes ◽  
Luiz Eugênio Nigro Mazzilli ◽  
Juan Antonio Cobo Plana ◽  
Fernanda Capurucho Horta Bouchardet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document