Phase Field Simulation of Parameters Affecting Dendrite Growth in a Forced Flow

2011 ◽  
Vol 228-229 ◽  
pp. 44-49
Author(s):  
Xun Feng Yuan ◽  
Yu Tian Ding

The phase-field model coupled with a flow field was used to simulate the dendrite growth in the undercooled pure metal melt. The effects of flow velocity, supercooling and anisotropy on the dendritic growth were studied. Results indicate that melt flow can enhance the emergence of side-branches, the morphology of the dendrite was composed of the principal branches and side-branches. With an increase in flow velocity and supercooling, the velocity of upstream dendritic tip increases, but the tip radius decreases first and then increases. With an increase in anisotropy values, the velocity of upstream dendritic tip increases and the tip radius decreases. The results of calculation agreed with LMK theory in the case of low flow velocity and anisotropy.

2011 ◽  
Vol 421 ◽  
pp. 574-577
Author(s):  
Wen Yuan Long ◽  
Ding Ping You ◽  
Jun Ping Yao ◽  
Hong Wan

We study the effect of force convection and temperature on the double dendrite growth during the solidification of binary alloy using a phase-field model. The mass and momentum conservation equations are solved using the Simple algorithm, and the thermal governing equation is numerically solved using an alternating implicit finite difference method. The results indicate that dendritic grows unsymmetrically under a forced flow, the growth velocity of the upstream tip is faster than the downstream tip. The downstream tip of the first dendrite and the upstream tip of the second dendrite are influenced each other, the upstream tip of the second dendrite will Coarsen, and the concentration at the boundary between them is the highest. Moreover, the interaction between the two dendrites is more and more obvious with the increasing of the temperature.


2013 ◽  
Vol 785-786 ◽  
pp. 1009-1012
Author(s):  
Xun Feng Yuan ◽  
Yan Yang

The phase field model coupling with the concentration field and flow field is used to simulate the dendrite growth during isothermal solidification of Fe-C alloy in a forced flow. The effects of flow velocity on the dendrite growth are studied. The results indicate that with introducing the forced flow, the upstream secondary dendrite arm space decreases, the downstream secondary dendrite arm space increases. As flow velocity increases, the side branch at the upstream regions become bulky and tilt, the side branch at the downstream regions degenerated and even disappear, the length of upstream dendrite arm increases linearly, the length of downstream dendrite arm decreases parabolically. Meanwhile, the solute concentration of upstream dendrite tip increases slowly first, then decreases, the solute concentration of downstream dendrite tip increases monotonously.


2010 ◽  
Vol 97-101 ◽  
pp. 3769-3772 ◽  
Author(s):  
Chang Sheng Zhu ◽  
Jun Wei Wang

Based on a thin interface limit 3D phase-field model by coupled the anisotropy of interfacial energy and self-designed AADCR to improve on the computational methods for solving phase-field, 3D dendritic growth in pure undercooled melt is implemented successfully. The simulation authentically recreated the 3D dendritic morphological fromation, and receives the dendritic growth rule being consistent with crystallization mechanism. An example indicates that AADCR can decreased 70% computational time compared with not using algorithms for a 3D domain of size 300×300×300 grids, at the same time, the accelerated algorithms’ computed precision is higher and the redundancy is small, therefore, the accelerated method is really an effective method.


2021 ◽  
pp. 126461
Author(s):  
Sepideh Kavousi ◽  
Austin Gates ◽  
Lindsey Jin ◽  
Mohsen Asle Zaeem

2019 ◽  
Vol 166 (10) ◽  
pp. D389-D394 ◽  
Author(s):  
Keliang Wang ◽  
Yu Xiao ◽  
Pucheng Pei ◽  
Xiaotian Liu ◽  
Yichun Wang

2015 ◽  
Vol 12 (11) ◽  
pp. 4289-4296 ◽  
Author(s):  
Li Feng ◽  
Jinfang Jia ◽  
Changsheng Zhu ◽  
Yang Lu ◽  
Rongzhen Xiao ◽  
...  

2013 ◽  
Vol 749 ◽  
pp. 660-667
Author(s):  
Yu Hong Zhao ◽  
Wei Jin Liu ◽  
Hua Hou ◽  
Yu Hui Zhao

The Phase Field model of solidification processes was carried out coupled with temperature field model. The influence of interface atomic time on dendrite growth morphology in undercooled melt was simulated with pure nickel. The experimental results show that when the interface atomic motion time parameter is minor, the liquid-solid interfaces were unstable, disturbance can be amplified easily so the complicated side branches will grow, and the disturbance speed up the dendrite growth. With the increase of , the liquid-solid interfaces become more stable and finally the smooth dendrite morphology can be obtained.


2011 ◽  
Vol 421 ◽  
pp. 90-97 ◽  
Author(s):  
Yun Chen ◽  
Na Min Xiao ◽  
Xiu Hong Kang ◽  
Dian Zhong Li

To understand the dendrite formation during solidification phase-field model has become a powerful numerical method of simulating crystal growth in recent years. Two phase-field models due to Wheeler et al. and Karma et al., respectively, have been employed for modeling the dendrite growth worldwidely. The comparison of the two models was performed. Then using the adaptive finite element method, both models were solved to simulate a free dendrite growing from highly undercooled melts of nickel at various undercoolings. The simulated results showed that the discrepancy between the two phase-field models is negligible. Careful comparison of the phase-filed simulations with LKT(BCT) theory and experimental data were carried out, which demonstrated that the phase-field models are able to quantitatively simulate the dendrite growth of nickel at low undercoolings, however, at undercoolings above ten percent of the melting point (around 180K), the simulated velocities by Wheeler and Karma model as well as the analytical predictions overestimated the reported experiment results.


Sign in / Sign up

Export Citation Format

Share Document