Behaviour of Composite Beam with Trapezoid Web Profiled Steel Section in Sub-Assemblage Frame

2011 ◽  
Vol 250-253 ◽  
pp. 1271-1274
Author(s):  
Saggaff Anis ◽  
M.Md. Tahir ◽  
Arizu Sulaiman ◽  
Poi Ngian Shek ◽  
Cher Siang Tan ◽  
...  

The objective of this paper is to present the behaviour of composite beam using Trapezoid Web Profiled (TWP) steel section by determining the moment resistance and the deflection of the beam with composite and non-composite connections. The TWP steel section is a built up section where the flange is of S355 steel section and the corrugated web of S275 steel section. Three full scales testing setting-up as sub-assemblage frame have been carried out. It was concluded that the use of composite connection and extended end-plate has reduced significantly the deflection and has significantly increased the loading capacity of composite beam.

2013 ◽  
Vol 284-287 ◽  
pp. 1330-1333
Author(s):  
Poi Ngian Shek ◽  
M.Md. Tahir ◽  
Cher Siang Tan ◽  
Arizu Sulaiman

A series of retrofitted extended end-plate connections have been tested experimentally and evaluated using the component method specified in Eurocode 3. The component method decomposed the end-plate connection into several components, including the tension zone, compression zone, vertical and horizontal shear zone that occurred at the bolt, end-plate, beam and column. Based on the theoretical model, the moment resistance and the initial stiffness of a connection can be predicted. Four experimental tests on the retrofitted extended end-plate connections have been conducted to verify the proposed design method. From the experiment tests, all moment resistance of the connections showed good agreement with theoretical predictions, which establish a reliable foundation to predict the moment resistance of the retrofitted end-plate connection. All initial stiffnesses calculated from theoretical predictions do not represent the actual behaviour of tested connection. All tested connections can be classified as partial strength based on EC 3: Part 1.8, in condition the welding capacity is at least 50% higher than the capacity calculated from the component method.


2020 ◽  
Vol 13 (2) ◽  
pp. 348-379
Author(s):  
R. F. F. KOCHEM ◽  
S. de NARDIN

Abstract The slim floor system has been used mainly due to the structural and constructive advantages of it, such as the capacity to overcome large spans with the low height of the composite floor system. There is a lack of finite element modelling researches of composite connections between the slim floor system and columns, especially with the concrete infilled steel tube columns. This paper presents the numerical approach based on the solid modelling, for the simulation of the nonlinear structural behavior of composite connection between partially encased composite beam and concrete infilled steel tube column; in this model, the composite beam represents the slim floor. The ABAQUS finite element code was used to investigate the behavior of composite connection that consists of a shear steel plate and negative reinforcement of the composite slab. In this paper, the authors discusses the procedures to the numerical model construction including finite elements and boundary conditions. Besides, the influence of stress-strain relationships for concrete and steel and the parameters that defines each model are presented and discussed, as well as the different steel to concrete interface conditions. Based on the results obtained, the effectiveness of the numerical model developed was verified against experimental results showing a good agreement response for the Moment vs. Rotation response, as well as the moment resistance of the composite connection.


Vestnik MGSU ◽  
2019 ◽  
pp. 179-187
Author(s):  
Ruslan I. Bagautdinov ◽  
Zaur S. Daurov ◽  
Yuriy P. Komarov ◽  
Nikolaiy N. Mostovskiy

Introduction. One of the greatest accents in the steel structures researches is the optimization of the design model. It is possible to reduce the cost of steel structures, optimize moment distribution and dynamic characteristics of the frame using the finite secant stiffness, which can be obtained by the described in the paper numerical modeling method. There are a lot of perspectives for the engineer in the field of numerical modeling. Most of them are possible to implement in the design procedure nowadays, but it is important to develop methods and standards for numerical modeling, in order to obtain convenient tools and reliable results. In order to study this issue in more depth, the “moment - turn” curve was studied, maximum stress values were determined, and rigidity and strength characteristics were prepared for each type of joint for structural analysis. Materials and methods. In the program Ansys was modelling three types of steel joints: end-plate connections, double web-angle connections and top and seat angle connections. Results. For three types of joints was obtained ultimate moment, location of destruction and moment-rotation curve. For extended end-plate connections was comparison of the obtained curve with experimental data. Conclusions. Three types of steel joints were modeled in the paper. The numerical modeling results show good correlation with the experimental ones. The data about the behavior of the joints were extracted and analyzed. As result, “moment-angle of rotation” curves were obtained. Finite secant stiffness of the joints for considering steel structures was obtained in the analysis. The resulting finite secant stiffness can be used in the steel frames design procedure.


ce/papers ◽  
2019 ◽  
Vol 3 (5-6) ◽  
pp. 362-371
Author(s):  
Vanessa S. de Freitas ◽  
Luiz Carlos de Almeida ◽  
Leandro M. Trautwein

2015 ◽  
Vol 74 (4) ◽  
Author(s):  
Boon Cheik Tan ◽  
Poi Ngian Shek ◽  
Mahmood Md Tahir ◽  
Ker Shin Mu

This paper presents an analytical study on flush end-plate (FEP) and extended end-plate (EEP) connections connected to cruciform column section using component method. The objective of this study is to predict the moment resistance and initial stiffness of FEP and EEP connections on cruciform column section. A series of FEP and EEP connections are tested in laboratory. The connection tests consist of four FEP and four EEP specimens with different configuration. Component method outlined in the publication of Steel Construction Institute and British Constructional Steelwork Association are based on BS5950 and Eurocode 3 (EC3) are used to predict the moment resistance and initial stiffness of the tested specimens. The experimental results are then used to validate the analytical predictions. As compare to the experimental results, all moment resistance of the connections coincide well with analytical predictions. Analytical prediction for initial stiffness using EC3 does not show good agreement with the experimental results. This study shows that the component method can be used to predict the moment resistance of FEP and EEP connections on cruciform column section. Further study need to be carried out for initial stiffness to obtain accurate analytical representation.


2012 ◽  
Vol 193-194 ◽  
pp. 1405-1413 ◽  
Author(s):  
Zhu Ling Yan ◽  
Bao Long Cui ◽  
Ke Zhang

This paper conducts analysis on beam-column extended end-plate semi-rigid connection joint concerning monotonic loading and cyclic loading of finite element through ANSYS program, mainly discussed the influence of parameters such as the form of end plate stiffening rib on anti-seismic performance of joint.


Sign in / Sign up

Export Citation Format

Share Document