secant stiffness
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 12)

H-INDEX

7
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 452
Author(s):  
Zeming Zhao ◽  
Kai Wei ◽  
Wenhao Ding ◽  
Fang Cheng ◽  
Ping Wang

The purpose of this research was to investigate and improve the accuracy of the existing slab-track mat (STM) specifications in the evaluation of the vibration reduction effect. The static nonlinearity and dynamic mechanical characteristics of three types of STMs were tested, and then a modified fractional derivative Poynting–Thomson (FDPT) model was used to characterize the preload and frequency dependence. A modified vehicle–floating slab track (FST) coupled dynamic model was established to analyze the actual insertion loss. The insertion loss error evaluated by the frequency-dependent tangent stiffness increased with the increase in STM nonlinearity, and the error obtained by the third preload tangent stiffness was usually greater than that of the second preload. Compared with the secant stiffness, the second preload frequency-dependent tangent stiffness was more suitable for evaluating STMs with high-static–low-dynamics (HSLD) stiffness. In order to reflect the frequency dependence effect and facilitate engineering applications, it is recommended that second preload tangent stiffness corresponding to the natural frequency of the FST be used for evaluation. Furthermore, the insertion loss of the STMs with monotonically increased stiffness decreased as the axle load increased, and the opposite was true for the STMs with monotonically decreased stiffness. The vibration isolation efficiency of the STMs with HSLD stiffness was both stable and better than that of the STMs with monotonic stiffness.


Author(s):  
Marcelo de Araujo Ferreira ◽  
Luís Augusto Bachega ◽  
Bruna Catoia

abstract The aim of this paper is the validation of monolithic equivalent stiffness applied to precast columns with grouted splice sleeve connections, wherein spliced precast elements have been compared with continuous monolithic elements. The experimental investigation has been carried out with bending tests for two spliced elements (L1 and L2), comparing the deflections along these elements with the results obtained from two monolithic elements (M1 and M2). The grouted splice sleeve connections have been characterized by their rotational stiffness (moment-rotation relationship), ultimate strength, and ductility, allowing the calibration of the equation for the secant stiffness according to ABNT NBR9062:2017. Based on the experimental results, the effective deformation length within the connection zone obtained was Led = 20ϕ, corresponding to a secant stiffness of Rsec = 77,785 kN∙m/rad. Although relative rotations have been observed at the grouted splice joint, the deflections along the precast spliced elements were very close to the deflections along the monolithic elements. A strong convergence for all phases of the load x displacement curves has been observed, as well as good approximation in terms of rotational stiffness, strength and ductility. Therefore, based on the analysis of the experimental results, the requirement to define the monolithic equivalent stiffness for the precast columns has been met.


Author(s):  
Jang-Woon Baek ◽  
Su-Min Kang ◽  
Tae-Ho Kim ◽  
Jin-Yong Kim

AbstractRecently, as a new precast concrete (PC) construction method for increasing economy and constructability, the PC double-beam system has been developed for factories or logistic centers, where construction duration is particularly important. In this study, half-scaled PC double beam–column connection was tested under gravity loading and cyclic lateral loading. The major test parameters included the use of the spliced PC column and the addition of reinforcement at the beam–column joint. In the gravity loading test, the flexural behavior of the PC double beam was investigated. The test results showed satisfactory flexural capacity at the PC double-beam section, validating the composite action between the PC and RC members. In the cyclic lateral loading test, the seismic performance of the PC double beam–column connection was investigated. Based on the test results, the failure mode, load-carrying capacity, deformation capacity, energy dissipation capacity, secant stiffness, and shear strength of the PC double-beam system were evaluated and compared with those of a conventional RC double beam–column connection. According to the test results, the structural performance of the PC double beam–column connection was comparable to that of the RC double beam–column connection and satisfied the acceptance criteria of moment frame in the ACI 374.1-05 provision.


2020 ◽  
Vol 25 (3) ◽  
pp. 1-16
Author(s):  
Ayad Al-Rumaithi ◽  
Aqeel T. Fadhil ◽  
Ban Fadhil Salman

AbstractIn this paper, the behavior of structural concrete linear bar members was studied using numerical model implemented in a computer program written in MATLAB. The numerical model is based on the modified version of the procedure developed by Oukaili. The model is based on real stress-strain diagrams of concrete and steel and their secant modulus of elasticity at different loading stages. The behavior presented by normal force-axial strain and bending moment-curvature relationships is studied by calculating the secant sectional stiffness of the member. Based on secant methods, this methodology can be easily implemented using an iterative procedure to solve non-linear equations. A comparison between numerical and experimental data, illustrated through the strain profiles, stress distribution, normal force-axial strain, and moment-curvature relationships, shows that the numerical model has good numerical accuracy and is capable of predicting the behavior of structural concrete members with different partially prestressing ratios at serviceability and ultimate loading stages.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Jian Wu ◽  
Liangcheng Zeng ◽  
Bo Wang

This paper presents the cyclic loading test results of a new type of fired shale hollow block masonry walls. Six specimens were designed including two specimens without reinforcements (bare walls) and four specimens constrained by structural columns (reinforced walls). The influences of aspect ratio, vertical compressive stress, and structural column on the seismic performance of the specimens were investigated. The failure mode, bearing capacity, ductility, stiffness degradation, and energy dissipation of specimens were analyzed. The results showed that the crack patterns of specimens changed from the horizontal straight shape (bare walls) to “X” shape (reinforced walls), and the corresponding bearing capacity, ductility, stiffness degradation, and energy dissipation of the specimens were improved. With the increase of the vertical compressive stress, the ductility and the secant stiffness of the specimens increased. Moreover, with the decrease of aspect ratio, the bearing capacity and secant stiffness of the masonry walls increased, while the energy dissipation capacity decreased. This paper confirms that fired shale hollow block walls could meet the seismic requirements through appropriate design, which could promote the application of this new type of block in civil engineering.


2020 ◽  
Vol 13 (2) ◽  
pp. 314-347
Author(s):  
G. M. S. ALVA ◽  
M. M. S. LACERDA ◽  
T. J. SILVA

Abstract In this paper, an experimental investigation is presented on semi-rigid interior beam-to-column connections constituted by precast concrete beams supported on precast concrete column corbels and bending continuity reinforcement bars for bending negative moments. The main purpose of this paper was to analyze the influence of vertical interface grout filling between the corbel and the beam and the position of the bending continuity reinforcement bars (crossing only the column or crossing only the slab) on the behavior of this type of connection. Tests on eight specimens were performed. It was noticed that the vertical interface grout filling contributed to increase both rotational flexural stiffness and flexural strength capacity of the connections when compared to the connections without grout filling. It was also noticed that in the specimens in which the continuity bars crossed only the column, the rotational flexural stiffness was higher. For these last ones, coefficients k and β for predicting the secant stiffness by simplified expression present in Brazilian Code NBR 9062 were evaluate from experimental results. These evaluated coefficients may be regarded as indicative values for structural designers and helpful for future researches.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Yanbin Fu ◽  
Siyue He ◽  
Sizhan Zhang ◽  
Yong Yang

The hardening soil (HS) model is the most commonly used constitutive models of soft soil of foundation pits of PLAXIS software in numerical analysis, and its parameters are prerequisite for accurate calculation. In this paper, relevant parameters of the HS model in Shenzhen Bay in China were studied through one-dimensional consolidation tests and triaxial shear tests. Analytical methods of reference secant stiffness and failure ratio of soft soil were systematically studied, the influence of shear rates on reference secant stiffness and failure ratio of soft soil was analyzed, and the relationship between stiffness parameters and compressive modulus of soft soil was established. The results showed that reference secant stiffness and failure ratio of soft soil obtained by different analytical methods were quite different, and the errors of reference secant stiffness and failure ratio of soft soil obtained by stress-strain curves were the smallest and the stability was the best; at the same time, with increase of shear rates, the peak deviator stress and reference secant stiffness of soft soil increased, but failure ratio did not change much. The research results could provide a reference of parameter analysis of soft soil for the HS model in the numerical analysis and similar working conditions of foundation pits.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Haoyu Huang ◽  
Yuan-Zhi Zhu ◽  
Wen-Shao Chang

The behaviour under cyclic bending and in particular the fatigue properties of shape memory alloy (SMA) bars are important for civil engineering applications. In this paper, structural and functional fatigue is studied for both NiTi- and copper-based shape memory alloys. The results are presented from cyclic bending tests on 7 mm diameter NiTi and 12 mm diameter CuAlMn SMA bars targeted at 100,000 cycles. During the tests, dynamic loading at 1 Hz, 5 Hz, and 8 Hz was applied for different strain levels (0.5%, 1%, 2%, and 6%). The stress-strain curve, damping ratio, and secant stiffness were analysed for material characterisation, and the evolution of these parameters was studied to assess functional fatigue. The fatigue life is extended dramatically when the strain is below 1%, and the structural fatigue life of CuAlMn is shown to be better than that of NiTi and to depend on the loading rate. However, decay in stiffness can be found in the CuAlMn SMA, which is considered to be caused particularly by its long grain boundary.


2019 ◽  
Vol 19 (4) ◽  
pp. 170-184
Author(s):  
Minsheng Guan ◽  
Siying Lin ◽  
Hongbiao Du ◽  
Jie Cui ◽  
Taizhou Yan

Abstract The paper aims to select a simple and effective damage index for estimating the extent of damage of rectangular concrete-filled steel tube (RCFT) structures subjected to ground motions. Two experimental databases of cyclic tests conducted on RCFT columns and frames are compiled. Test results from the database are then used to evaluate six different damage indices, including the ductility ratio (μ), drift ratio, initial-to-secant stiffness ratio (DKJ), modified initial-to-secant stiffness ratio (Dms), energy coefficient (E), and the combined damage index (DPA) as a benchmark indicator. Selection criteria including correlation, efficiency, and proficiency are utilized in the selection process. The optimal alternative for DPA is identified on the basis of a comprehensive evaluation. The evaluations indicate that Dms previously proposed by some of the authors is the most appropriate substitution of DPA, followed by the drift ratio. For the case of the slenderness ratio less than or equal to 30, the same grades of relation between the investigated damage indices and the benchmark are observed. However, in the case of the slenderness ratio larger than 30, the drift ratio tends to be the optimal alternative. In most cases, μ is proved to be an inadequate replacement of DPA.


Sign in / Sign up

Export Citation Format

Share Document