Analytical Study of End-Plate Connection on Cruciform Column Section

2015 ◽  
Vol 74 (4) ◽  
Author(s):  
Boon Cheik Tan ◽  
Poi Ngian Shek ◽  
Mahmood Md Tahir ◽  
Ker Shin Mu

This paper presents an analytical study on flush end-plate (FEP) and extended end-plate (EEP) connections connected to cruciform column section using component method. The objective of this study is to predict the moment resistance and initial stiffness of FEP and EEP connections on cruciform column section. A series of FEP and EEP connections are tested in laboratory. The connection tests consist of four FEP and four EEP specimens with different configuration. Component method outlined in the publication of Steel Construction Institute and British Constructional Steelwork Association are based on BS5950 and Eurocode 3 (EC3) are used to predict the moment resistance and initial stiffness of the tested specimens. The experimental results are then used to validate the analytical predictions. As compare to the experimental results, all moment resistance of the connections coincide well with analytical predictions. Analytical prediction for initial stiffness using EC3 does not show good agreement with the experimental results. This study shows that the component method can be used to predict the moment resistance of FEP and EEP connections on cruciform column section. Further study need to be carried out for initial stiffness to obtain accurate analytical representation.

2013 ◽  
Vol 284-287 ◽  
pp. 1330-1333
Author(s):  
Poi Ngian Shek ◽  
M.Md. Tahir ◽  
Cher Siang Tan ◽  
Arizu Sulaiman

A series of retrofitted extended end-plate connections have been tested experimentally and evaluated using the component method specified in Eurocode 3. The component method decomposed the end-plate connection into several components, including the tension zone, compression zone, vertical and horizontal shear zone that occurred at the bolt, end-plate, beam and column. Based on the theoretical model, the moment resistance and the initial stiffness of a connection can be predicted. Four experimental tests on the retrofitted extended end-plate connections have been conducted to verify the proposed design method. From the experiment tests, all moment resistance of the connections showed good agreement with theoretical predictions, which establish a reliable foundation to predict the moment resistance of the retrofitted end-plate connection. All initial stiffnesses calculated from theoretical predictions do not represent the actual behaviour of tested connection. All tested connections can be classified as partial strength based on EC 3: Part 1.8, in condition the welding capacity is at least 50% higher than the capacity calculated from the component method.


2011 ◽  
Vol 243-249 ◽  
pp. 942-947 ◽  
Author(s):  
Wei Zhao ◽  
Qian Liu

End plate stiffener failures occure in a number of tests in recent years. And no relevant rules are given in design codes for steel structures. A design method for angles and thickness of stiffeners in extended end plate connecionts is derived by requiring the eqaul distribution of tensile force among bolts inside and outside of beam flange. And a balance between the force transmitted by the stiffener and by the beam flange is considered too. Comparisons with results of ANSYS show that the stiffeners designed by the proposed method in this paper are able to change the extended portion of endplates from one side clamped to 2 panels fixed on two adjacent sides. Simple formulas for calculating rotational rigidities of the connections with and/or without stiffeners were also proposed with component method, in which the end-plate stiffness, column flange stiffness and bolt stiffness are inclueded. Comparisons with results of ANSYS show that the proposed equations have good precision and can be applied to pratical engineering.


2011 ◽  
Vol 250-253 ◽  
pp. 3730-3733
Author(s):  
Poi Ngian Shek ◽  
M.Md. Tahir ◽  
Cher Siang Tan ◽  
Ahmad Beng Hong Kueh

This paper presents an experimental investigation on typical end-plate connection with reduced beam-to-end plate welding, connected to cruciform column (CCUB) section. The study aims to reduce the cost of fabrication and materials. Two tests were conducted to study the behavior of the proposed connections and evaluate the failure modes, moment resistance, initial stiffness and rotational capacity of the connections. The experimental results indicated that the failure mechanisms for the tested specimens begin with the end-plate yielding followed by bolt slippage that was limited to the tension region of the joint due to the tension forces exerted through the top bolt rows. The experimental results will then be used to validate the theoretical model for the T-stub idealization of the tension zone.


2014 ◽  
Vol 578-579 ◽  
pp. 505-508
Author(s):  
Shao Qin Zhang ◽  
Lei Wu

In the present paper, we investigate the effect of a padding-plate on the behavior of extended end-plate semi-rigid connections. The numerical simulations were carried out for a standard extended end-plate connection joint without padding-plate and two connection joints with 4mm and 6mm thick padding-plates. The existing experimental results verified the validity of the numerical model. The numerical results have shown that a thin padding-plate will more or less decline the carrying load capacity of the connection joint but greatly improve the connect ductility. Filling a thin padding-plate in the end-plate connection is feasible and brings the forewarning function.


2013 ◽  
Vol 321-324 ◽  
pp. 1766-1769
Author(s):  
Jian Li Zhao

Extend end-plat bolted connections are widely used in steel frames. The rotational stiffness has great influence on steel frame stiffness and deformation. The decrease of the frame lateral stiffness, due to connection rotational deformability, leads to the increase of the period of vibration and the frame sensitivity to second-order effects. This thesis divides the end plate into several parts equivalent to different Timoshenkos beams to determine their contribution to rotational stiffness of the connection. Then stiffness of all parts and bolts is given, and then the component method is used to calculate rotational initial stiffness of extended end-plate connections. Comparisons with results of ANSYS and related tests show that the proposed equations have excellent precision. And the calculating process is simple and easily applicable in practice.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5133
Author(s):  
Liang Luo ◽  
Maohua Du ◽  
Jian Yuan ◽  
Jun Shi ◽  
Suhui Yu ◽  
...  

Extended end-plate (EP) bolted connections are widely used in steel structures as moment-resisting connections. Most of these connections are semi-rigid or in other words flexible. The paper aims to study the behavior of such connections under the effect of column top-side cyclic loading using the finite element (FE) method. For semi-rigid connections, it is very vital to determine the moment-rotation relationship as well as the connection stiffness. These beam-column connections have been parametrically studied, the effect of joint type, shear forces, diameter of bolt, thickness of end-plate, and end-plate style were studied. Parametric studies show that the panel zone shear force is the key factor and has a significant effect on the connection stiffness. Finally, based on the component method, the stiffness of the bending component is improved, and the initial stiffness calculation model of the connection under column top-side cyclic loadings is established. The results show that the calculation model is in good agreement with the finite element analyses, and this proves that the calculation model proposed in this study could act as a reference method.


2012 ◽  
Vol 256-259 ◽  
pp. 724-731
Author(s):  
Heng Hua Wang ◽  
Xi Yu Wang ◽  
Yang Qing Liu ◽  
Xiao Yu

This paper brings forward a new kind of specially-shaped column and its end-plate connection joint with H-section beam. The static loading and cyclic loading simulation tests of the joint are carried out using the finite element software. Under static load, the moment-rotation curves with different parameters are obtained, and then the effects of those parameters on the initial stiffness and the ultimate moment and the stress distribution of key positions of the joint are discussed; under cyclic load, the moment-rotation hysteretic curves are obtained and mechanical behaviors of the basic test specimen are comprehensively analyzed. The results indicate that the joint possesses not only reasonably high initial stiffness and ultimate capacity, but also excellent ductility and energy-dissipation capacity.


2011 ◽  
Vol 250-253 ◽  
pp. 1271-1274
Author(s):  
Saggaff Anis ◽  
M.Md. Tahir ◽  
Arizu Sulaiman ◽  
Poi Ngian Shek ◽  
Cher Siang Tan ◽  
...  

The objective of this paper is to present the behaviour of composite beam using Trapezoid Web Profiled (TWP) steel section by determining the moment resistance and the deflection of the beam with composite and non-composite connections. The TWP steel section is a built up section where the flange is of S355 steel section and the corrugated web of S275 steel section. Three full scales testing setting-up as sub-assemblage frame have been carried out. It was concluded that the use of composite connection and extended end-plate has reduced significantly the deflection and has significantly increased the loading capacity of composite beam.


2010 ◽  
Vol 163-167 ◽  
pp. 591-595
Author(s):  
Jing Feng Wang ◽  
Xin Yi Chen ◽  
Lin Hai Han

This paper studies structural behaviour of the blind bolted connections to concrete-filled steel tubular columns by a serial of experimental programs, which conducted involving eight sub-assemblages of cruciform beam-to-column joints subjected to monotonic loading and cyclic loading. The moment-rotation hysteretic relationships and failure models of the end plate connections have been measured and analyzed. A simplified analysis model for the blind bolted connections is proposed based on the component method. It is concluded that the blind bolted end plate connection has reasonable strength and stiffness, whilst the rotation capacity of the connection satisfies the ductility requirements for earthquake-resistance in most aseismic regions. This typed joint has excellent seismic performance, so it can be used in the moment-resisting composite frame.


Sign in / Sign up

Export Citation Format

Share Document