Failure Load Prediction of Bolted Single-Lap Composite Joint Based on XFEM

2011 ◽  
Vol 250-253 ◽  
pp. 742-745
Author(s):  
Zhen Qing Wang ◽  
Song Zhou ◽  
Ji Feng Zhang ◽  
Xiao Qiang Wang

Composite materials have excellent mechanical properties and can be mechanically tailor designed, so the composite materials are widely used in civil engineering and structural system such as aerospace and shipbuilding industry. Numerous studies show that the damage of joints is main reason which results in composite structure failure. In this paper, extended finite element method (XFEM) is applied to investigate the failure load prediction of bolted single-lap composite joint. The influences of geometric parameter: edge-to-diameter (E/D) on failure load is investigated.

Author(s):  
Y. Jiang ◽  
Chen Xuedong ◽  
Zhichao Fan

Extended finite element method (XFEM) is a versatile tool for fracture mechanics. Due to its excellent property, XFEM is widely used in research and engineering. On the other hand, cohesive element is a good option for interface delamination in composite materials. In order to take advantage of these two methods, combined XFEM and cohesive element method is developed for fracture analysis in composite materials in two-dimension. In this method, XFEM is used to simulate matrix fracture, and cohesive element is used to simulate delamination between layers. Due to the differences in the construction of these two methods, special attention is paid to the intersection of these two methods. The new method is applied to the fracture analysis of composite materials. The results show this method has excellent property as expected. This method shows potential application in fracture analysis of composite materials.


Author(s):  
Elena Benvenuti ◽  
Nicola Orlando

AbstractWe propose a formulation for tracking general crack paths in elastodamaging materials without mesh adaptivity and broadening of the damage band. The idea is to treat in a unified way both the damaging process and the development of displacement discontinuities by means of the regularized finite element method. With respect to previous authors’ contributions, a novel damage evolution law and an original crack tracking framework are proposed. We face the issue of mesh objectivity through several two-dimensional tests, obtaining smooth crack paths and reliable structural results.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 507
Author(s):  
K. Yakoubi ◽  
S. Montassir ◽  
Hassane Moustabchir ◽  
A. Elkhalfi ◽  
Catalin Iulian Pruncu ◽  
...  

The work investigates the importance of the K-T approach in the modelling of pressure cracked structures. T-stress is the constant in the second term of the Williams expression; it is often negligible, but recent literature has shown that there are cases where T-stress plays the role of opening the crack, also T-stress improves elastic modeling at the point of crack. In this research study, the most important effects of the T-stress are collected and analyzed. A numerical analysis was carried out by the extended finite element method (X-FEM) to analyze T-stress in an arc with external notch under internal pressure. The different stress method (SDM) is employed to calculate T-stress. Moreover, the influence of the geometry of the notch on the biaxiality is also examined. The biaxiality gave us a view on the initiation of the crack. The results are extended with a comparison to previous literature to validate the promising investigations.


Sign in / Sign up

Export Citation Format

Share Document