excellent property
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 18)

H-INDEX

10
(FIVE YEARS 3)

Author(s):  
Nashwan Alsalam Ali ◽  
Abdul Monem S. Rahma ◽  
Shaimaa H. Shaker

<p class="0abstract">The multimedia application developments in recent years lead to the widespread of 3D model applications. It becomes more popular in various fields as well as exchanging it over the internet. The security of the 3D models is a very important issue now a day, so the scheme for encrypting the 3D model will be proposed in this work. In this proposed scheme, the 3D polygon mesh model will be protected through the encrypting process based on a 3D Lorenz Chaotic map where the vertices value of the 3D polygon mesh model will be modified using 3D keys generated by 3D Lorenz Chaotic Map, which has excellent property and provides a good diffusion. The proposed scheme was implemented on various 3D models, which have a different number of vertices and faces. The experimental results show that the proposed scheme has good encryption results, which were noted through completely deforming and changing the whole shape of the 3D models. The Hausdorff Distance (HD) and histogram metrics are adopted to calculate the matching degree between the original and extracted model. The results show that the original and extracted model are identical through the values of HD, where they are approximately zero, and the histogram visually is identical.    </p>


Carbon ◽  
2021 ◽  
Vol 179 ◽  
pp. 400-407
Author(s):  
Mengyi Peng ◽  
Menglei Dong ◽  
Wei Wei ◽  
Huajie Xu ◽  
Chuntai Liu ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3484
Author(s):  
Shuhan Sun ◽  
Lizhen Duan ◽  
Zhiyong Xu ◽  
Jianlin Zhang

Blind image deblurring, also known as blind image deconvolution, is a long-standing challenge in the field of image processing and low-level vision. To restore a clear version of a severely degraded image, this paper proposes a blind deblurring algorithm based on the sigmoid function, which constructs novel blind deblurring estimators for both the original image and the degradation process by exploring the excellent property of sigmoid function and considering image derivative constraints. Owing to these symmetric and non-linear estimators of low computation complexity, high-quality images can be obtained by the algorithm. The algorithm is also extended to image sequences. The sigmoid function enables the proposed algorithm to achieve state-of-the-art performance in various scenarios, including natural, text, face, and low-illumination images. Furthermore, the method can be extended naturally to non-uniform deblurring. Quantitative and qualitative experimental evaluations indicate that the algorithm can remove the blur effect and improve the image quality of actual and simulated images. Finally, the use of sigmoid function provides a new approach to algorithm performance optimization in the field of image restoration.


Author(s):  
Dr. Rohith S ◽  
Harish V

Storage and exchange of data of the patient images are common in medical applications. To protect the information of the patient and to avoid miss handling of the patient information data hiding scheme is very much essential. Reversible Data Hiding (RDH) scheme is one such scheme paid more attention to hide the data in encrypted images, since it maintains the excellent property that the original cover can be lossless recovered after embedded data is extracted while protecting the image content’s confidentiality. In this paper initially space is reserved from the encrypted images, which may be used to embed the information later stage. Histogram shifting based Reversible Data Hiding scheme used to reserve the room before encryption process. The proposed method can achieve real reversibility, that is, data extraction and image recovery are free of any error. Experiments show that this novel method and achieves better perceptual quality.


2021 ◽  
pp. 152808372198896
Author(s):  
Salma Ali ◽  
Ibrahim Abdalla ◽  
Magdi Elamin Gibril ◽  
Hasab AM Ahmed ◽  
Xiaoze Jiang

Due to increase in fabric thickness and decrease compactness in packing, film bonding is unfavorable for airbag fabrics, furthermore, the uncoated fabric fabricated with a high density but it still has hot gas leakage problems. This study focuses on enhancement of vehicle airbag nylon 66 fabric properties by using a combination of different concentration of silica nanoparticles (SiO2 NPs) and low-density adhesion polyvinyl alcohol (PVA). The results illustrated that the nylon 66 fabric, which coated with PVA and SiO2 NPs presents an excellent property such as a thin layer reached at (0.009 mm), also thermal and mechanical properties have been enhanced to include better mechanical properties according to commercial guidelines airbag of Federal Motor Vehicle Safety Standards (FMVSS). Additionally, the weight per square meter of nylon 66 fabric coated with the PVA and high concentration of SiO2 NPs is 9.9 grams. Besides, the final dry weight of the coating (PVA/SiO2) material taken by the nylon 66 fabric is just 0.4 grams per square meter. The coated fabric demonstrated a hydrophobicity property in addition to the air-permeability has decreased by increasing the amount of SiO2 NPs in the composite material. The PVA and SiO2 NPs dispersed on the surface of the fabrics without any aggregation, as well, the coated fabric is gradually changed from flexible to hard which resulted in the better final performance in the proper and regular thickness along the whole fabric.


2020 ◽  
pp. 002199832095388
Author(s):  
Ilangovan Arun ◽  
C Yuvaraj ◽  
A Madhu ◽  
T Ramesh

Electric Discharge Alloying/Coating a thermal process of elemental deposition together with pyrolysis carbon enhance various properties. Nickel and silica both provide excellent property, but the solidification rate differs the material microstructural properties (amorphous) that improves its properties under diverse working conditions. In present study analysis of properties such as surface roughness, Microstructure, layer thickness, elemental composition, porosity, decarburizing depth is detailed through metallurgical characterizations and mechanical testing are compared to nickel and silica. Nickel holds a hardness value of 1272 HV and across 968 HV with minimal in carter, pokes, splatters having uniform boundaries that improves friction co-efficient, limiting wear resistant, phase transformation, oxidation, and graphite flakes confirm self-lubrication properties at room temperature under higher loading condition. Silica having 1284 HV on the surface and across it reaches to 980 HV due to dispersed elements and its phase transformation of silica to silica carbide directs secondary arching improves bonding by restrictive carbon deposition promotes passage to speak. This limits the porosity, coating layer thickness and increases metal matrix composition in decarburizing layer holds stability towards coating. Nickel affords surface properties limiting matrix composite, oxidation, and grain growth where else silica provides exceptional in metallurgical mixed composition improves the mechanical behaviour of coating.


2020 ◽  
pp. 096739112093461
Author(s):  
WVWH Wickramaarachchi ◽  
S Walpalage ◽  
SM Egodage

Blending of two or more polymers generates a new material, which is more cost-effective than a newly synthesised material. Blending-type thermoplastic elastomer (TPE) is produced by melt-mixing of a thermoplastic with a rubber. These blends have high demands associated with excellent property combinations of the parent materials. Particulate fillers are used in the rubber and plastic industry for property modification and cost reduction. In this work, six particulate fillers, namely, calcium carbonate, barium sulphate (BaSO4), kaolin, talc, Snobrite clay and dolomite were used to develop natural rubber (NR)/high-density polyethylene (HDPE) TPE blends, and the most suitable filler for roofing application was identified. A series of NR/HDPE 20/80 blends were prepared by varying filler loading from 10 phr to 30 phr at 10 phr intervals using a Plasticorder. Mechanical properties, such as tensile strength, hardness, impact strength and tear strength, and gel content of the blends were investigated. The addition of talc, dolomite and kaolin to NR/HDPE blend showed reduced impact strength, which is the most important property for a roofing application. The other three fillers showed improved impact strength at specific loadings. The blend with 30 phr of BaSO4 was identified as the best blend, as per the overall performance.


2020 ◽  
Vol 6 (11) ◽  
pp. eaay2840 ◽  
Author(s):  
Wenjing Fan ◽  
Qiang He ◽  
Keyu Meng ◽  
Xulong Tan ◽  
Zhihao Zhou ◽  
...  

Wearable textile electronics are highly desirable for realizing personalized health management. However, most reported textile electronics can either periodically target a single physiological signal or miss the explicit details of the signals, leading to a partial health assessment. Furthermore, textiles with excellent property and comfort still remain a challenge. Here, we report a triboelectric all-textile sensor array with high pressure sensitivity and comfort. It exhibits the pressure sensitivity (7.84 mV Pa−1), fast response time (20 ms), stability (>100,000 cycles), wide working frequency bandwidth (up to 20 Hz), and machine washability (>40 washes). The fabricated TATSAs were stitched into different parts of clothes to monitor the arterial pulse waves and respiratory signals simultaneously. We further developed a health monitoring system for long-term and noninvasive assessment of cardiovascular disease and sleep apnea syndrome, which exhibits great advancement for quantitative analysis of some chronic diseases.


Sign in / Sign up

Export Citation Format

Share Document