Based on Three-Dimensional Limit Equilibrium Slope Stability Analysis of Open Pit

2011 ◽  
Vol 261-263 ◽  
pp. 1465-1469
Author(s):  
Lan Jia ◽  
Lan Zhu Cao ◽  
Zi Ling Song

As the complexity and the tall of open pit slope, two-dimensional slope stability analysis methods have been unable to meet the needs of the accuracy of stability analysis. Therefore, for the complex situation of Pingzhuang open pit slope, use with three-dimensional rigid body limit equilibrium method to analysisstability of slope.slope3D system, which consists of pre-treatment, limit equilibrium analysis solver and post-processing, the first processing core is to construct three-dimensional geological model of the slope, post-processing mainly results analysis and visualization graphics. The system combined organically the slope engineering geological information three-dimensional visualization and the analysis of stability, which make us to determine the landslide model, reveal the mechanism of landslide more accurately. Make an important contribution for ensuring safety in open pit production, a good foundation for slope stability analysis of other open pit.

1989 ◽  
Vol 26 (4) ◽  
pp. 679-686 ◽  
Author(s):  
Oldrich Hungr ◽  
F. M. Salgado ◽  
P. M. Byrne

A study comparing a three-dimensional extension of the Bishop simplified method with other limit equilibrium solutions is presented. Very good correspondence is found in cases of rotational and symmetric sliding surfaces, such as ellipsoids. The Bishop method tends to be conservative when applied to nonrotational and asymmetric surfaces because it neglects internal strength. The error is, however, tolerably small for many commonly occurring slide geometries. Indices are proposed to identify cases for which the method should not be used. With its limitations defined, the Bishop simplified method offers a useful algorithm for three-dimensional limit equilibrium analysis. Key words: three-dimensional slope stability analysis.


2020 ◽  
Author(s):  
Masagus Ahmad Azizi ◽  
Irfan Marwanza ◽  
Muhammad Kemal Ghifari ◽  
Afiat Anugrahadi

The 3-dimensional slope stability analysis has been developing rapidly since the last decade, and currently a number of geomechanical researchers in the world have put forward ideas for optimization of slope design related to the economics and safety of mining operations. The 3-dimensional slope stability analysis methods has answered the assumption of spatial parameters in determining safety factors and the failure probability, thus the volume of failed material and the location of the most critical slopes can be determined. This chapter discusses two methods of 3-dimensional slope stability analysis, namely the limit equilibrium method (LEM) and finite element method (FEM). LEM 3D requires an assumption of failure type with the variable of analysis are the maximum number of columns, the amount of grid points, increment radius, and type of slip surface. On the other hand, FEM 3D requires an assumption of convergence type, absolute force and energy, with the variable of analysis are mesh type and maximum number of iterations. LEM 3D shows that the cuckoo algorithm is reliable in obtaining position and shape of slip surface. Meanwhile FEM 3D, the optimum iteration number needs to be considered to improve analysis efficiency and preserving accuracy.


2012 ◽  
Vol 446-449 ◽  
pp. 1905-1913
Author(s):  
Mo Wen Xie ◽  
Zeng Fu Wang ◽  
Xiang Yu Liu ◽  
Ning Jia

The Various methods of optimization or random search have been developed for locating the critical slip surface of a slope and the related minimum safety factor in the limit equilibrium stability analysis of slope. But all these methods are based on a two-dimensional (2D) method and no one had been adapted for a search of the three-dimensional (3D) critical slip surface. In this paper, a new Monte Carlo random simulating method has been proposed to identify the 3D critical slip surface, in which assuming the initial slip to be the lower part of an ellipsoid, the 3D critical slip surface in the 3D slope stability analysis is located by minimizing the 3D safety factor of limit equilibrium approach. Based on the column-based three-dimensional limit equilibrium slope stability analysis models, new Geographic Information Systems (GIS) grid-based 3D deterministic limit equilibrium models are developed to calculate the 3D safety factors. Several practical examples, of obtained minimum safety factor and its critical slip surface by a 2D optimization or random technique, are extended to 3D slope problems to locate the 3D critical slip surface and to compare with the 2D results. The results shows that, comparing with the 2D results, the resulting 3D critical slip surface has no apparent difference only from a cross section, but the associated 3D safety factor is definitely higher.


2020 ◽  
Vol 4 (2) ◽  
pp. 73-77
Author(s):  
Sami Ullah ◽  
Muhib Ullah Khan ◽  
Gohar Rehman

One of the most common problem faced by geotechnical engineers is slope stability assessment. The predictions of slope stability in soil or rock masses is very important for the designing of reservoir dams, roads, tunnels, excavations, open pit mines, and other engineering structures. It is the importance of slope stability problem that has reasoned alternate methods for evaluating the safety of a slope. This study reviews the existing methods used for slope stability analysis. These methods are divided into five different groups which are; (a) Limit equilibrium method, (b) Numerical simulation method, (c) Artificial neural network method, (d) Limit analysis method, and (e) Vector sum method.


2013 ◽  
Vol 58 (2) ◽  
pp. 505-519
Author(s):  
Kaveh Ahangari ◽  
Arman Gholinezhad Paji ◽  
Alireza Siami Behdani

Slope stability analysis is one of the most important factors in designing open pit mines. Therefore an optimal slope design that supports both aspects of economy and safety is very significant. There are many different methods in slope stability analysis including empirical, limit equilibrium, block theory, numerical, and probabilistic methods. In this study, to analyze the overall slope stability of southern wall of Chadormalu iron open pit mine three numerical, limit equilibrium and probabilistic methods have been used. Software and methods that is used for analytical investigation in this study are FLAC software for numerical analysis, SLIDE software and circuit failure chart for limit equilibrium analysis and qualitative fault tree and semi-quantitative risk matrix for probabilistic analysis. The results of all above mentioned methods, was a circular failure occurrence in Metasomatite rock zone between 1405 to 1525 m levels. The main factors of failure occurrence in this range were heavily jointing and existing of faults. Safety factors resulted from numerical method; Circular chart method and SLIDE software are 1.16, 1.25 and 1.27 respectively. Regarding instability and safety factors in Metasomatite rock zone, in order to stabilize the given zone, some considerations such as bench angle and height reduction should be planned. In results of risk matrix method this zone was mentioned too as a high risk zone that numerical and limit equilibrium methods confirmed this.


2020 ◽  
Author(s):  
Fang-Cing Liu ◽  
Chih-Hsuan Liu ◽  
Ching Hung

<p>  In slope stability analysis, two-dimensional (2D) analysis techniques are usually applied due to its simplicity and extensive applicability. Given that slope failures are three-dimensional (3D) in nature, especially in the slope with complex geometry, a 3D slope stability analysis could lead to more reasonable results [1]. In slope stability analyses, limit equilibrium method (LEM) and finite element method (FEM) are widely used. Note that LEM only satisfies equations of statics and does not consider strain and displacement compatibility; FEM may encounter significant mesh distortion during large deformations where convergence difficulty and the analysis may be terminated before the slope reaches failure [2]. In the study, a Coupled Eulerian-Lagrangian (CEL) method, which allows materials to flow through fixed meshes regardless of distortions, was utilized to investigate 3D slope stability [3]. Validation of the numerical modeling was first presented using a typically assumed 3D slope. After the validation, various types of slopes (i.e. turning corners, convex- and concave-shaped surfaces) with various boundary conditions (unrestrained, semi-restrained, and fully restrained) are carefully conducted to examine the 3D slope stability. It is anticipated the 3D analyses can shed some light on the slope stability analysis with extreme or complex geometry cases and provide more reasonable results.</p><p> </p><p>REFERENCE</p><ol><li>T.-K. Nian, R.-Q. Huang, S.-S. Wan, and G.-Q. Chen (2012): Three-dimensional strength-reduction finite element analysis of slopes: geometric effects. Canadian Geotechnical Journal, 49: 574–588.</li> <li>C. Hung, C.-H. Liu, G.-W. Lin and Ben Leshchinsky (2019): The Aso-Bridge coseismic landslide: a numerical investigation of failure and runout behavior using finite and discrete element methods. Bulletin of Engineering Geology and the Environment. doi: 10.1007/s10064-018-1309-3.</li> <li>C. Han. Lin, C. Hung and T.-Y. Hsu (2020): Investigations of granular material behaviors using coupled Eulerian-Lagrangian technique: From granular collapse to fluid-structure interaction. Computers and Geotechnics (under review).</li> </ol><p> </p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document