limit equilibrium methods
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 35)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Muhammad Salman Babar ◽  
Jahanzaib Israr ◽  
Umair Ali ◽  
Gang Zhang

Abstract This study presents a framework for semi-empirical slope stability analysis of Mohmand dam, an important ongoing mega concrete faced rockfill dam hydropower project in Pakistan. The project comprises of 213 m high hybrid dam that will produce 800 megawatt of clean hydropower energy in addition to an effective flood mitigation. Also, it will supply water for both irrigation and drinking to the provincial capital city, Peshawar. In this study, finite element and limit equilibrium methods have been used for slope stability analysis and factors of safety have been computed for all anticipated loading conditions including earthquake loading. The rockfill samples of main dam were obtained from the construction material site of Mohmand dam and the input parameters for slope stability analysis were obtained both empirically and through laboratory testing. Results of both limit equilibrium and finite element analyses have been compared and it was observed that the latter is more conservative than the former except for earthquake loading. The implications of current findings have been demonstrated using an important case study of an independent dam site that would boost the confidence of practitioners.


2021 ◽  
Vol 11 (13) ◽  
pp. 6060
Author(s):  
Behnam Azmoon ◽  
Aynaz Biniyaz ◽  
Zhen (Leo) Liu

This paper presents a comparison study between methods of deep learning as a new category of slope stability analysis, built upon the recent advances in artificial intelligence and conventional limit equilibrium analysis methods. For this purpose, computer code was developed to calculate the factor of safety (FS) using four limit equilibrium methods: Bishop’s simplified method, the Fellenius method, Janbu’s simplified method, and Janbu’s corrected method. The code was verified against Slide2 in RocScience. Subsequently, the average FS values were used to approximate the “true” FS of the slopes for labeling the images for deep learning. Using this code, a comprehensive dataset of slope images with wide ranges of geometries and soil properties was created. The average FS values were used to label the images for implementing two deep learning models: a multiclass classification and a regression model. After training, the deep learning models were used to predict the FS of an independent set of slope images. Finally, the performance of the models was compared to that of the conventional methods. This study found that deep learning methods can reach accuracies as high as 99.71% while improving computational efficiency by more than 18 times compared with conventional methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yaming Tang ◽  
Heping Shu ◽  
Qiang Xue ◽  
Jiayun Wang ◽  
Wei Feng ◽  
...  

Landslide is one of the most widely distributed surface morphological landscapes, and it can cause a series of major economic and human losses. Field monitoring and limit equilibrium methods were applied to investigate Baota Mountain landslide stability, and soil volumetric water content, different scales of rainfall data, and landslide displacements were monitored using various equipment. The theoretical factor of safety was also calculated for the landslide. Finally, the theoretical results were validated by monitoring data in the field. The results demonstrate that soil volumetric water content experienced the greatest change with time at a depth of 0.2 m and then 1 m; however, the change in soil volumetric water content was relatively small with time at a soil depth ranging from 2.0 m to 4.0 m. Soil volumetric water content also did not change with time at a soil depth of 5.0 m and below. In addition, the retardation effect was found in different depths of volumetric water content for continuous rainfall. The safety factors were 2.713 and 1.133 for landslide No. 1 and landslide No. 2, respectively. These results indicate that landslide No. 1 is relatively stable, but there is a probability of the occurrence of movement in landslide No. 2. The monitoring displacement data indicate that landslide No.1 was in a relatively stable state between 2008 and 2013, and this result was in accordance with the value of theoretical calculation. This study provided relevant parameters for numerical simulation of landslides in loess areas.


2021 ◽  
Author(s):  
Hua Liu ◽  
Zelin Niu ◽  
Yuanhong Dong ◽  
Naifei Liu ◽  
Shuocheng Zhang

Abstract In order to study the influence of chemical solution on the stability of loess embankment in seasonally frozen regions, the compression index, shear strength index and embankment safety factor of compacted loess fillings that were treated by different concentrations of chemical solution were analyzed through laboratory test and slope stability analysis program. The experimental results showed that the collapsible coefficients of remolded loess treated by different chemical solution will all increase which comparing the distilled water, and then will change again after freezing-thawing cycles (FTCs). The compression index of undisturbed loess will show regularity with the increase of chemical solution concentration. The shear strength of remolded loess also changed under the chemical solution and FTCs. Besides, simulation of the strength parameters by limit equilibrium methods showed that the safety factor of loess embankment with treatment of solution was significantly higher than that of untreated one, and the FTC would cause a further deterioration. The embankment stability improved after treated by chemical solution without considering seepage of rainwater. These results would provide a novel method to the problem of embankment stability related to environmental condition changes.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Gadaawin Lamessa ◽  
Matebie Meten

AbstractThe slope instability was one of the common problems along the road that connects Gutane Migiru town to Fincha sugar factory, Western Ethiopia. The effect of the problem was intense mostly; during the rainy season, that triggers different modes of rock slope failure. As a result, the road was frequently damaged and blocked by the failed rock that in turn hinders the traffic activities. Thus, this study aimed at stability analyses of the critical slope sections using kinematic and limit equilibrium methods (LEM). The estimation of the most important input parameter in LEM analyses like cohesion and friction angle along the failure plane is often intricate and cumbersome. Hence, this paper used Rocscience software to effortlessly and instantly compute cohesion and friction angle along specific failure planes and then to carry out kinematic and LEM analyses. Besides, the strength of the intact rock was determined by the Schmidt hammer in the field and point load laboratory test. According to the kinematic analysis result, the wedge mode of rock slope failure occurred at slope sections D1S2 and D1S3 though the planar mode of failure occurred at slope sections D1S4 and D4S1. The factor of safety determined under all anticipated conditions became less than and greater than one at slope sections D1S2, D1S3, D1S4, and D4S1, and this depicts an unstable and stable slope, respectively. From the analysis result, the combined effect of rainfall, steepness of the slope dip, and joint set was the main factors that caused the slope insatiability.


2021 ◽  
Vol 325 ◽  
pp. 01015
Author(s):  
Alesandro Sejo Luden ◽  
I Gde Budi Indrawan ◽  
Dwikorita Karnawati

The objective of this research is to evaluate the stability of the natural slopes at the inlet and outlet portals of the Bolangu Ulu diversion tunnel, Gorontalo. The natural slopes were considered stable, and therefore slope stability analyses were not carried out previously in the tunnel portal design. The slope stability analyses were carried out using the Circular Failure Chart (CFC) and Limit Equilibrium Methods (LEM). Input data for the slope stability analyses were obtained from field mapping and laboratory testing of soil and rock samples. The results show that the portal slopes consist of diorite and residual soil. Both stability analysis methods yield nearly the same results. The slope at the outlet section had the factor of safety (FOS) values of 1.29 and 1.30 based on the CFC method and LEM, respectively, indicating the slope in a stable condition. However, the slope at the inlet section had the FOS values of 1.01 and 1.07 based on the CFC method and LEM, respectively, indicating the slope in a critical condition. The results suggest that stabilization of the portal slopes, particularly the portal slope at the inlet section, is required to prevent slope failures under static and earthquake loads.


Sign in / Sign up

Export Citation Format

Share Document