A Model for the Effects of Strain Rate and Temperature on the Deformation Behavior of Ultrafine-Grained Metals

2011 ◽  
Vol 291-294 ◽  
pp. 1173-1177
Author(s):  
Zi Ling Xie ◽  
Lin Zhu Sun ◽  
Fang Yang

A theoretical model is developed to account for the effects of strain rate and temperature on the deformation behavior of ultrafine-grained fcc Cu. Three mechanisms, including dislocation slip, grain boundary diffusion, and grain boundary sliding are considered to contribute to the deformation response simultaneously. Numerical simulations show that the strain rate sensitivity increases with decreasing grain size and strain rate, and that the flow stress and tensile ductility increase with either increasing strain rate or decreasing deformation temperature.

2012 ◽  
Vol 735 ◽  
pp. 31-36 ◽  
Author(s):  
Hector Basoalto ◽  
Paul L. Blackwell

The conventional consensus has it that the magnitude of the strain rate sensitivity observed in superplastic materials is linked with grain boundary sliding. The grain boundary sliding mechanism is thought to theoretically produce a strain rate sensitivity exponent of 0.5, which is in good agreement with experimental data. The present paper argues that a rate sensitivity of 0.5 can be generated by dislocation slip under certain temperature and strain rate regimes that overlap with conditions representative of superplasticity. A physically based slip model that links the relevant microstructural parameters to the macroscopic strain rate is proposed.


2010 ◽  
Vol 667-669 ◽  
pp. 677-682 ◽  
Author(s):  
Nguyen Q. Chinh ◽  
Tamás Csanádi ◽  
Jenő Gubicza ◽  
Ruslan Valiev ◽  
Boris Straumal ◽  
...  

Most ultrafine-grained (UFG) materials produced by severe plastic deformation (SPD) exibit only limited ductility which is correlated with the low strain rate sensitivity (SRS) of these materials. Recently, it was demonstrated that SPD is capable of increasing the room temperature ductility of aluminum-based alloys attaining elongations up to 150%, together with relatively high strain rate sensitivity. In the present work, additional results and discussions are presented on the effect of grain boundary sliding (GBS) and SRS on the ductility of some UFG metals and alloys. The characteristics of constitutive equations describing the steady-state deformation process are quantitatively analyzed for a better understanding of the effects of grain boundaries and strain rate sensitivity.


2016 ◽  
Vol 838-839 ◽  
pp. 256-260
Author(s):  
Takahiko Yano ◽  
Naoko Ikeo ◽  
Hiroyuki Watanabe ◽  
Toshiji Mukai

Superplastic deformation behavior was investigated for a dual-phase Mg-Ca alloy. The elongation-to-failure reached more than 120% with the strain rate sensitivity, m, over 0.4. The activation energy required for the deformation was estimated to be 98 kJ/mol which is close to the activation energy for grain boundary diffusion in magnesium. Therefore, the superplastic deformation mechanism was suggested to be the grain boundary sliding rate, which is controlled by boundary diffusion.


2010 ◽  
Vol 667-669 ◽  
pp. 915-920
Author(s):  
Konstantin Ivanov ◽  
Evgeny V. Naydenkin

Deformation mechanisms occurring by tension of ultrafine-grained aluminum processed by equal-channel angular pressing at room temperature are investigated using comparative study of the microstructure before and after tensile testing as well as deformation relief on the pre-polished surface of the sample tested. Deformation behavior and structure evolution during tension suggest development of grain boundary sliding in addition to intragrain dislocation slip. Contribution grain boundary sliding to the overall deformation calculated using the magnitude of shift of grains relative to each other is found to be ~40%.


2016 ◽  
Vol 838-839 ◽  
pp. 106-109 ◽  
Author(s):  
Tetsuya Matsunaga ◽  
Hidetoshi Somekawa ◽  
Hiromichi Hongo ◽  
Masaaki Tabuchi

This study investigated strain-rate sensitivity (SRS) in an as-extruded AZ31 magnesium (Mg) alloy with grain size of about 10 mm. Although the alloy shows negligible SRS at strain rates of >10-5 s-1 at room temperature, the exponent increased by one order from 0.008 to 0.06 with decrease of the strain rate down to 10-8 s-1. The activation volume (V) was evaluated as approximately 100b3 at high strain rates and as about 15b3 at low strain rates (where b is the Burgers vector). In addition, deformation twin was observed only at high strain rates. Because the twin nucleates at the grain boundary, stress concentration is necessary to be accommodated by dislocation absorption into the grain boundary at low strain rates. Extrinsic grain boundary dislocations move and engender grain boundary sliding (GBS) with low thermal assistance. Therefore, GBS enhances and engenders SRS in AZ31 Mg alloy at room temperature.


2011 ◽  
Vol 473 ◽  
pp. 556-563 ◽  
Author(s):  
Mahmoud Farzin ◽  
Reza Jafari Nedoushan ◽  
Mohammad Mashayekhi

A constitutive model is proposed for simulations of hot forming processes. Dominant mechanisms in hot forming including inter-granular deformation, grain boundary sliding and grain boundary diffusion are considered in the constitutive model. A Taylor type polycrystalline model is used to predict inter-granular deformation. Previous works on grain boundary sliding and grain boundary diffusion are extended to drive three dimensional macro stress-strain rate relationships for each mechanism. In these relationships, the effect of grain size is also taken into account. It is shown that for grain boundary diffusion, stress-strain rate relationship obeys the Prandtl-Reuss flow rule. The proposed model is used to simulate step strain rate tests and the results are compared with experimental data. It is concluded that the model can be used to predict flow stress for various grain sizes and strain rates. The proposed model can be directly used in simulation of hot forming processes and as an example the bulge forming process is simulated and the results are compared with experimental data.


1995 ◽  
Vol 10 (4) ◽  
pp. 864-869 ◽  
Author(s):  
M.G. Zelin ◽  
Q. Li ◽  
R.Z. Valiev ◽  
P. Lukač ◽  
A.K. Mukherjee

The progress of high temperature deformation in samples of two commercial titanium alloys with superplastic (SP) structure, non-SP structure, and with an SP layer sandwiched between the non-SP regions has been studied on the scale of the entire deformed volume and on the scale of grain groups. The results of mechanical behavior showed that samples with SP layer exhibit higher stress level than those with completely SP structure and higher strain rate sensitivity than those with completely non-SP structure. Samples with SP layer demonstrate a more pronounced deccrease in strain rate sensitivity with the increase of strain than samples with completely SP structure. Deformation in the SP layer proceeds as grain shear in a layer-by-layer manner. The deformation of SP layer through the operation of cooperative grain boundary sliding, i.e., sliding of grain groups as an entity along certain grain boundary surfaces, provides the main contribution to the total strain.


Sign in / Sign up

Export Citation Format

Share Document