Synchronization Analysis of the Double Exciting Motors in Nonlinear Vibration System Based on Reaching Law

2011 ◽  
Vol 295-297 ◽  
pp. 2197-2200
Author(s):  
Xiao Hao Li ◽  
Jie Liu

Based on the dynamic model of the nonlinear vibration system which driven by double exciting motors, the rotate speed difference and phase difference state space equations have been deduced. According to the design feature of the nonlinear vibration system and the vibration synchronization requirement of double exciting motors, the approach control synchronization strategy has been deduced with sliding mode reaching law. The practical examples and tests shows that the reaching law synchronization controller can effectively control the double exciting motors to realize the synchronization movement, and the synchronization controller has stronger robustness. The analysis result can provide the theoretical and test basis for the further exploitation of synchronization vibrating machine.

2019 ◽  
Vol 39 (4) ◽  
pp. 1087-1101
Author(s):  
Nan Zhang ◽  
Shiling Wu

Harmonic vibration synchronization of the two excited motors is an important factor affecting the performance of the nonlinear vibration system driven by the two excited motors. From the point of view of the hysteresis force, the nonlinear dynamic models of the nonlinear vibration system driven by the two excited motors are presented for the analysis of the hysteresis force with the asymmetry. An approximate periodic solution for the nonlinear vibration system with the hysteresis force is investigated using the nonlinear models. The condition of harmonic vibration synchronization is theoretically analyzed using the rotor–rotation equations of the two excited motors in the nonlinear dynamic models and the stability condition of harmonic vibration synchronization also is theoretically analyzed using Jacobi matrix of the phase difference equation of two excited motors. Using Matlab/Simlink, harmonic vibration synchronization of the two excited motors and the stability of harmonic vibration synchronization for the nonlinear vibration system with the hysteresis force are analyzed through the selected parameters. Various synchronous processes of the nonlinear vibration system with the hysteresis force are obtained through the difference rates of the two excited motors (including the initial phase difference, the initial rotational speed difference, the difference of the motors parameters). It has been shown that the research results can provide theoretical basis for the design and research of the vibration system driven by the two-excited motors.


2019 ◽  
Vol 39 (1) ◽  
pp. 114-128
Author(s):  
Nan Zhang

The self-synchronization characteristics of the two excited motors for the nonlinear vibration system with the asymmetrical hysteresis have been proposed in the exceptional circumstances of cutting off the power supply of one of the two excited motors. From the point of view of the hysteretic characteristics with the asymmetry, a class of nonlinear dynamic model of the self-synchronous vibrating system is presented for the analysis of the hysteretic characteristics of the soil, which is induced by the relation between the stress and the strain in the soil. The periodic solutions for the self-synchronous system with the asymmetrical hysteresis are investigated using nonlinear asymptotic method. The synchronization condition for the self-synchronous vibrating pile system with the asymmetrical hysteresis is theoretical analyzed using the rotor–rotation equations of the two excited motors. The synchronization stability condition also is theoretical analyzed using Jacobi matrix of the phase difference equation of the two excited motors. Using Matlab/Simlink, the synchronous operation of the two excited motors and the synchronous stability operation of the self-synchronous system with the asymmetrical hysteresis are analyzed through the selected parameters. Various synchronous phenomena are obtained through the difference rates of the two excited motors, including the different initial phase and the different initial angular velocity, and so on. Especially, when there is a certain difference in the two excited motors, the synchronous operation of the two excited motors and the synchronous stability operation of the self-synchronous vibrating system with the asymmetrical hysteresis can still be achieved after the power supply of one of the two excited motors has been disconnected. It has been shown that the research results can provide a theoretical basis for the research of the vibration synchronization theory.


Sign in / Sign up

Export Citation Format

Share Document