nonlinear dynamic models
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 16)

H-INDEX

13
(FIVE YEARS 1)

Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 317
Author(s):  
Alexander Zuev ◽  
Alexey N. Zhirabok ◽  
Vladimir Filaretov ◽  
Alexander Protsenko

The problem of fault identification in electric servo actuators of robot manipulators described by nonstationary nonlinear dynamic models under disturbances is considered. To solve the problem, sliding mode observers are used. The suggested approach is based on the reduced order model of the original system having different sensitivity to faults and disturbances. This model is realized in canonical form that enables relaxing the limitation imposed on the original system. Theoretical results are illustrated by practical example.


2021 ◽  
Author(s):  
G.A. Oparin ◽  
V.G. Bogdanova ◽  
A.A. Pashinin

The article proposes a method based on using binary dynamical systems in the classification problem for Boolean vectors (binary feature vectors). This problem has practical application in various fields of science and industry, for example, bioinformatics, remote sensing of natural objects, smart devices of the Internet of things, etc. Binary synchronous autonomous nonlinear dynamic models with an unknown characteristic matrix are considered. Matrix elements are chosen in such a way that the Boolean reference vectors are equilibrium states of the binary dynamic model. The attraction regions of equilibrium states act as classes (one reference vector corresponds to each class). The classified vector is the initial state of the model. Simple and aggregated classifiers are considered. The proposed method is demonstrated using an illustrative example.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Shuguang Zhang ◽  
Wenku Shi ◽  
Zhiyong Chen

Smart structures such as damping adjustable dampers made of magnetorheological (MR) fluid can be used to attenuate vibration transmission in vehicle seat suspension. The main research content of this paper is the nonlinearity and hysteresis characteristics of the MR damper. A hysteretic model considering both excitation characteristics and input current is proposed to fit the damper force-velocity curve for the MR damper under different conditions. Multifactor sensitivity analysis based on the neural network method is used to obtain importance parameters of the hyperbolic tangent model. In order to demonstrate the fitting precision of the different models, the shuffled frog-leaping algorithm (SFLA) is employed to identify the parameters of MR damper models. The research results indicate that the modified model can not only describe the nonlinear hysteretic behavior of the MR damper more accurately in fixed conditions, compared with the original model, but also meet the fitting precision under a wide range of magnitudes of control current and excitation conditions (frequency and amplitude). The method of parameter sensitivity analysis and identification can also be used to modify other nonlinear dynamic models.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7059
Author(s):  
Higor Barbosa Santos ◽  
Marco Antonio Simoes Teixeira ◽  
Nicolas Dalmedico ◽  
Andre Schneider de Oliveira ◽  
Flavio Neves-Jr ◽  
...  

Climbing robots are characterized by a secure surface coupling that is designed to prevent falling. The robot coupling ability is assured by an adhesion method leading to nonlinear dynamic models with time-varying parameters that affect the robot’s mobility. Additionally, the wheel friction and the force of gravity force are also relevant issues that can compromise the climbing ability if they are not well modeled. This work presents a model-based torque controller for velocity tracking in a four-wheeled climbing robot specially designed to inspect storage tanks. The model-based controller (MPC) compensates for the effects of nonlinearities due to the forces of gravity, friction, and adhesion through the dynamic and kinematic modeling of the climbing robot. Dynamic modeling is based on the Lagrange-Euler approach, which allows a better understanding of how forces and torques affect the robot’s movement. Besides, an analysis of the interaction force between the robot and the contact surface is proposed, since this force affects the motion of the climbing robot according to spatial orientation. Finally, simulations are carried out to examine the robot’s dynamics during the climbing movement, and the MPC is validated through the redrobot simulator V-REP and practical experiments. The presented results highlight the compensation of the nonlinear effects due to the robot’s climbing motion by the proposed MPC controller.


Mechanika ◽  
2020 ◽  
Vol 26 (3) ◽  
pp. 212-220
Author(s):  
Zixue DU ◽  
Zhen YANG ◽  
Zhouzhou XU ◽  
Junchao ZHOU* ◽  
Zhongwei HOU

Based on the Lagrange equation, the linear and nonlinear dynamic models of straddle monorail pantograph considering the lateral vibration of bogie are derived. On this basis, the lateral coupling dynamic model of pantograph-catenary is established. Newmark method is used to solve the pantograph-catenary coupling dynamic model. In order to evaluate the applicability of the two models,this paper analyzed the contact force response of two model with different speeds. The reasearch show that when the speed is below 40 km/h, the contact forces of nonlinear model and linear model can reflects the lateral excitation of the finger plate. When the speed exceeds 40 km/h, only the nonlinear model can reflect the lateral excitation of finger palte, the nonlinear pantograph-catenary coupling dynamics model is more suitable to the straddle-type monorail pantograph-catenary coupling research.


Author(s):  
Anbo Wang ◽  
Yanwen Liu ◽  
Xiaofang Liu ◽  
Steven W. Kirkpatrick ◽  
Virginia Phan ◽  
...  

Abstract The LACMTA HR4000 heavy rail vehicle was designed to meet the ASME RT-2 Safety Standard for Structural Requirements for Heavy Rail Transit Vehicles. The crash energy management (CEM) structures designed for this vehicle also provide unique performance characteristics through use of a staged combination of CEM technologies. The resulting design, using easily replaceable components, provides reduced repair costs for lower speed collisions, minimizes the number of cars damaged during a collision, while exceeding the RT-2 standard for safety to the operator. None of the CEM technologies used are novel, but their integrated design provides a unique performance in heavy rail vehicle design. This paper provides an overview of the CEM design development. First, a general description of the CEM system function is provided, including the various CEM technologies used and how they interact during a collision. Then the 1-dimensional and 3-dimensional nonlinear dynamic models developed for optimizing the design are discussed. The CEM test program performed to demonstrate the system function and validate the modeling is described. Finally, the performance of the CEM system in train-to-train collision analyses is presented. Underframe testing was conducted for validation of the simulations.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Itai Dattner ◽  
Harold Ship ◽  
Eberhard O. Voit

Nonlinear dynamic models are widely used for characterizing processes that govern complex biological pathway systems. Over the past decade, validation and further development of these models became possible due to data collected via high-throughput experiments using methods from molecular biology. While these data are very beneficial, they are typically incomplete and noisy, which renders the inference of parameter values for complex dynamic models challenging. Fortunately, many biological systems have embedded linear mathematical features, which may be exploited, thereby improving fits and leading to better convergence of optimization algorithms. In this paper, we explore options of inference for dynamic models using a novel method of separable nonlinear least-squares optimization and compare its performance to the traditional nonlinear least-squares method. The numerical results from extensive simulations suggest that the proposed approach is at least as accurate as the traditional nonlinear least-squares, but usually superior, while also enjoying a substantial reduction in computational time.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Xiulong Chen ◽  
Yuefei Tang

Due to the errors arising from machining or assembly, the deformation during movement, and the wear of movement pairs, the clearance will be generated at the kinematic pair of the mechanism, and the service life or working accuracy of the mechanism is reduced. At present, most of the researches are in a simple mechanism with a single clearance, and there are few papers on the complex mechanism, such as the high-speed mechanism which contains multiple clearances. In order to give a computational methodology for the dynamic modeling and analysis of the planar multilink mechanism with multiple degrees of freedom and multiple clearances and master the dynamic characteristics of the planar multilink mechanism, the nonlinear dynamic models of the multiclearance hybrid seven-bar mechanism under different clearance numbers, different clearance values, different clearance positions, and different driving velocities are established and analyzed. The dynamic output response comparison diagram of the mechanism and the collision force diagrams and center trajectory diagrams of the mechanism at the clearance are given. Then, nonlinear dynamics of the mechanism is studied by different clearance values and driving speeds. The corresponding trajectory phase diagrams, Poincare maps, and bifurcation diagrams are given. The above research results provide an effective theoretical basis for the study about the nonlinear dynamic characteristics of the planar link mechanism with clearance and how to compensate or control the clearances.


Sign in / Sign up

Export Citation Format

Share Document