Study on Fault Diagnosis of Wind Turbine Main Bearing Based on Finite Element Analysis and Wavelet Analysis

2011 ◽  
Vol 308-310 ◽  
pp. 1264-1268 ◽  
Author(s):  
Yi Qu ◽  
Chang Zheng Chen ◽  
Bo Zhou

A new method based on finite element analysis and wavelet analysis for the fault diagnosis of wind turbine main bearings is presented in the paper. Firstly, take example for low speed bearing, the three-dimension models of the good and fault bearings are set up, which was discussed with using finite element method. The stress, strain and contact stress distribution were computed by this method. Then the wavelet transform of data signals collected in experiment was carried out with db6 wavelet and 4 scales on the basis of the stress wave analysis. The frequency D3 and D4 signals were reconstructed and characteristic frequencies of stress waves with the simulative faults were extracted. It has been shown that the method applying finite element analysis and wavelet analysis is an efficient method for the fault diagnosis of wind turbine main bearings.

2019 ◽  
Vol 44 (1) ◽  
pp. 49-59
Author(s):  
Nilesh Chandgude ◽  
Nitin Gadhave ◽  
Ganesh Taware ◽  
Nitin Patil

In this article, three small wind turbine blades of different materials were manufactured. Finite element analysis was carried out using finite element software ANSYS 14.5 on modeled blades of National Advisory Committee for Aeronautics 4412 airfoil profile. From finite element analysis, first, two flap-wise natural frequencies and mode shapes of three different blades are obtained. Experimental vibration analysis of manufactured blades was carried out using fast Fourier transform analyzer to find the first two flap-wise natural frequencies. Finally, the results obtained from the finite element analysis and experimental test of three blades are compared. Based on vibration analysis, we found that the natural frequency of glass fiber reinforced plastic blade reinforced with aluminum sheet metal (small) strips increases compared with the remaining blades. An increase in the natural frequency indicates an increase in the stiffness of blade.


Author(s):  
Prenil Poulose ◽  
Zhong Hu

Strength evaluation and failure prediction on a modern composite wind turbine blade have been conducted using finite element analysis. A 3-dimensional finite element model has been developed. Stresses and deflections in the blade under extreme storm conditions have been investigated for different materials. The conventional wood design turbine blade has been compared with the advanced E-glass fiber and Carbon epoxy composite blades. Strength has been analyzed and compared for blades with different laminated layer stacking sequences and fiber orientations for a composite material. Safety design and failure prediction have been conducted based on the different failure criteria. The simulation error estimation has been evaluated. Simulation results have shown that finite element analysis is crucial for designing and optimizing composite wind turbine blades.


Author(s):  
Koji Gotoh ◽  
Tetsuya Ueda ◽  
Koji Murakami ◽  
Tomoaki Utsunomiya

Abstract Floating wind turbine facilities installed in deep sea areas play an essential role in the promotion of green energy. One of the problems associated with the commercialization of facilities installed in the deep sea is the maintenance cost of mooring chains, because they are expensive and wear between links leads to chain breakage. Therefore, it is necessary to establish a quantitative wear evaluation method for mooring chains. An experimental facility to reproduce the wear caused by sliding between links at the scale of an actual floating wind turbine was developed to investigate the wear performance in seawater conditions, and wear tests were conducted. Substitute ocean water was applied to the experiment instead of seawater. In addition, a procedure for nonlinear finite element analysis was improved to estimate the behaviour of wear between links. Measured stress versus strain relations of the links was considered in the finite element analysis. The experiments and numerical analysis confirmed that the amount of wear in the substitute ocean water was less than that obtained in dry air and that the tensile force between links is an important factor for the degree of wear between links.


2011 ◽  
Vol 117-119 ◽  
pp. 1535-1542 ◽  
Author(s):  
Hua Wei Zhang ◽  
Wei Xia ◽  
Zhi Heng Wu

In this paper, the clamping unit of a two-platen injection molding machine was modeled by Pro/ENGINEER, and was imported to Altair HyperWorks. In HyperMesh module, the finite element model was set up, ANSYS has been used in the finite element analysis of the clamping unit and the deformation and stress results were obtained. Based on the topology optimization of HyperWorks/OptiStruct, recommendations to improve the structure of the clamping mechanism are presented; the results showed that less material was used while its performance was maintained.


2011 ◽  
Vol 19 (3-4) ◽  
pp. 747-754 ◽  
Author(s):  
Yin-hu Qiao ◽  
Jiang Han ◽  
Chun-yan Zhang ◽  
Jie-ping Chen ◽  
Ke-chuan Yi

2012 ◽  
Vol 608-609 ◽  
pp. 755-758
Author(s):  
De Tian ◽  
Qi Li ◽  
Jian Mei Zhang ◽  
Xiao Dong Zhang ◽  
Ning Bo Wang

Use software Pro/E to build a blade model based on 1.5MW wind turbine, analyze stress characteristics of different regions including spar cap, webs and trailing edge of the dangerous section of blade at related loads by using different strength criteria to make finite element analysis to check the strength, through comparing the F.I.(fatigue index) and stress bringing about the idea that using different strength criteria to analyze different material of different regions can ensure the security and reliability of the designed blade at large extent.


2013 ◽  
Vol 405-408 ◽  
pp. 921-924
Author(s):  
Xue Feng Cai ◽  
Zheng Zhang ◽  
Yong Chao Ma ◽  
Ji Zhong Zhou

Light steel temporary building is commonly used in the construction site, with advantages on simple structure, repeat used and small deadweight. There are still not enough researches and relevant standards to conduct the design and construction of the buildings. In order to precede to theoretical study on integral structure of light steel temporary buildings a method which used to set up finite element analysis model about integral structure of light steel temporary buildings was proposed in this paper. The method is based on finite element analysis software, Ansys. Using this method a monolayer integral structure, a two-story integral structure and a trilaminar integral structure model were set up. Lateral displacement under design load of the integral structure was solved out by these finite element models.


Sign in / Sign up

Export Citation Format

Share Document