Automatic Positioning Closed-Loop Control Cystem Design of Linear Time Grating Sensor

2011 ◽  
Vol 328-330 ◽  
pp. 2121-2124
Author(s):  
Tian Heng Zhang ◽  
Dong Lin Peng ◽  
Ji Sen Yang ◽  
Xian Quan Wang ◽  
Chun Dong

A high-precise automatic positioning system for data sample of linear time grating sensor is designed. In order to achieve linear time grating sensor of data sample, improve measure work efficiency, an ARM MCU is used as a major chip to control the stepper motor to rotate. In this way, the stepper motor drives the ball screw, the moving probe of linear time grating sensor and reading head of linear grating to move synchronously. A high-precision automatic positioning of the system hardware is designed. In addition, ARM controlling circuits and stepper motor driving circuits are designed. Therefore, the special communication interface is designed for the high-precision automatic positioning system, receiving the feedback signal from time grating sensor, forming a high-precision closed loop control system, and communicating with upper computer by serial. Experiment results prove that the positioning precision of control system can reach 0.1 um.

2012 ◽  
Vol 605-607 ◽  
pp. 1537-1540 ◽  
Author(s):  
Xiao Yu Wang

The application of PLC 、Stepper motor driver and Encoder are introduced in stepper motor closed-loop control system. The Principle diagram is analyzed, the Control System flow chart and Software program are designed. Through in-situ operation, the system has been proved well reliability、 stability and simplicity , achieved high accuracy and low cost requirements。


Author(s):  
Axel Fehrenbacher ◽  
Christopher B. Smith ◽  
Neil A. Duffie ◽  
Nicola J. Ferrier ◽  
Frank E. Pfefferkorn ◽  
...  

The objective of this research is to develop a closed-loop control system for robotic friction stir welding (FSW) that simultaneously controls force and temperature in order to maintain weld quality under various process disturbances. FSW is a solid-state joining process enabling welds with excellent metallurgical and mechanical properties, as well as significant energy consumption and cost savings compared to traditional fusion welding processes. During FSW, several process parameter and condition variations (thermal constraints, material properties, geometry, etc.) are present. The FSW process can be sensitive to these variations, which are commonly present in a production environment; hence, there is a significant need to control the process to assure high weld quality. Reliable FSW for a wide range of applications will require closed-loop control of certain process parameters. A linear multi-input-multi-output process model has been developed that captures the dynamic relations between two process inputs (commanded spindle speed and commanded vertical tool position) and two process outputs (interface temperature and axial force). A closed-loop controller was implemented that combines temperature and force control on an industrial robotic FSW system. The performance of the combined control system was demonstrated with successful command tracking and disturbance rejection. Within a certain range, desired axial forces and interface temperatures are achieved by automatically adjusting the spindle speed and the vertical tool position at the same time. The axial force and interface temperature is maintained during both thermal and geometric disturbances and thus weld quality can be maintained for a variety of conditions in which each control strategy applied independently could fail.


2017 ◽  
Vol 3 (2) ◽  
pp. 363-366
Author(s):  
Tobias Steege ◽  
Mathias Busek ◽  
Stefan Grünzner ◽  
Andrés Fabían Lasagni ◽  
Frank Sonntag

AbstractTo improve cell vitality, sufficient oxygen supply is an important factor. A deficiency in oxygen is called Hypoxia and can influence for example tumor growth or inflammatory processes. Hypoxia assays are usually performed with the help of animal or static human cell culture models. The main disadvantage of these methods is that the results are hardly transferable to the human physiology. Microfluidic 3D cell cultivation systems for perfused hypoxia assays may overcome this issue since they can mimic the in-vivo situation in the human body much better. Such a Hypoxia-on-a-Chip system was recently developed. The chip system consists of several individually laser-structured layers which are bonded using a hot press or chemical treatment. Oxygen sensing spots are integrated into the system which can be monitored continuously with an optical sensor by means of fluorescence lifetime detection.Hereby presented is the developed hard- and software requiered to control the oxygen content within this microfluidic system. This system forms a closed-loop control system which is parameterized and evaluated.


Author(s):  
Bahram Yaghooti ◽  
Ali Siahi Shadbad ◽  
Kaveh Safavi ◽  
Hassan Salarieh

In this article, an adaptive nonlinear controller is designed to synchronize two uncertain fractional-order chaotic systems using fractional-order sliding mode control. The controller structure and adaptation laws are chosen such that asymptotic stability of the closed-loop control system is guaranteed. The adaptation laws are being calculated from a proper sliding surface using the Lyapunov stability theory. This method guarantees the closed-loop control system robustness against the system uncertainties and external disturbances. Eventually, the presented method is used to synchronize two fractional-order gyro and Duffing systems, and the numerical simulation results demonstrate the effectiveness of this method.


Sign in / Sign up

Export Citation Format

Share Document