Vibration Characteristic Prediction of a Heavy Machinery Suspension Seat Using Multi-Body Dynamic Analysis Method

2008 ◽  
Vol 33-37 ◽  
pp. 1259-1264
Author(s):  
W.C. Lee ◽  
Chae Sil Kim ◽  
H.O. Choi ◽  
Y.G. Jung ◽  
Jung I. Song

This article proposes a novel simulation technique to predict the reasonable dynamic characteristics of a suspension seat for heavy machinery using a commercial multibody dynamic analysis code, ADAMS. The dynamic model is simulated with the specific condition such as sinusoidal and sweep input. The experiment test for actual suspension seat is conducted for reviewing the dynamic simulation model with same input condition. As the simulation results shows good agreements with experimental test results, the dynamic analysis model is reasonable and will be very helpful for predicting the dynamic characteristic for the suspension seat for heavy machinery and for designing the other type seats with the other suspension mechanism types.

Author(s):  
Toshimasa Takouda ◽  
Yoshinori Owaki ◽  
Masashi Tsushima ◽  
Taichi Shiiba

The aim of this study is to improve the performance of a steering torque simulator with a multibody vehicle model. From the perspective of the calculation speed, the augmented formulation and the penalty method were investigated as the formulation of the multibody dynamic analysis. In this study, the step size of the real-time analysis was shortened by embedding matrix libraries to the multibody dynamic analysis. In addition, the friction characteristics of the steering rack of an actual vehicle was experimentally evaluated in order to enhance the reality of the developed simulator. The friction model was identified on the basis of the experimental result and was applied to the multi-body dynamic analysis. A slalom test was conducted with the developed simulator and was compared with the experiment of an actual vehicle.


2021 ◽  
Vol 224 ◽  
pp. 108729
Author(s):  
Shujie Zhao ◽  
Xun Meng ◽  
Huajun Li ◽  
Dejiang Li ◽  
Qiang Fu

2012 ◽  
Vol 51 ◽  
pp. 1-15 ◽  
Author(s):  
L. Sun ◽  
R. Eatock Taylor ◽  
Y.S. Choo

Author(s):  
Henry T. Wu ◽  
Neel K. Mani

Abstract Vibration normal modes and static correction modes have been previously used to model flexible bodies for dynamic analysis of mechanical systems. The efficiency and accuracy of using these modes to model a system depends on both the flexibility of each body and the applied loads. This paper develops a generalized method for the generation of a set of Ritz vectors to model flexible bodies for dynamic analysis of multi-body mechanical systems. The Ritz vectors are generated using the distribution of dynamic loading on a flexible body. Therefore they form the most efficient vector basis for the spatial distribution of the loadings. The Ritz vectors can be re-generated when the system undergoes significant changes of its configuration and the regeneration procedure is inexpensive. The combinations of vibration normal modes and the proposed Ritz vectors thus form more efficient and accurate vector bases for the modeling of flexible bodies for dynamic analysis.


2014 ◽  
Author(s):  
Yuan feng Xia ◽  
Jian Pang ◽  
Chengtai Hu ◽  
Cui Zhou ◽  
Cong Wu

Sign in / Sign up

Export Citation Format

Share Document