Analysis 2.5-D Permutation Power Transmission Line to Decrease Electro-Magnetic Influence at High Technology Nano-Fab

2011 ◽  
Vol 356-360 ◽  
pp. 2711-2717
Author(s):  
Yu Lin Song ◽  
Chwen Yu ◽  
Feng Chang Chuang ◽  
Ying Cheng Tseng ◽  
Jyun Yu Zou ◽  
...  

We present optimal permutation with 2.5-D power transmission lines system to reduce electro-magnetic influence at high technology nano-Fab. In this study, the magnetic field was lessened by mirror array power cable system, and simulation of results predicted the best permutations to decrease electromagnetic influence (EMI) value below 0.28 mG at working space without any shielding. Furthermore, this innovative method will cost down at high technology nano-Fab especially for 28 nanometer process.

2021 ◽  
Vol 11 (24) ◽  
pp. 11984
Author(s):  
Yu-Lin Song ◽  
Manoj Kumar Reddy ◽  
Hung-Yi Lin ◽  
Luh-Maan Chang

There are many high-power electrical cables around and within semiconductor foundries. These cables are the source of extremely low-frequency (ELF < 300 Hz) magnetic fields that affect the tools which operate by the function of electronic beams. Miss operation (MO) happens because the ELF magnetic fields induce beam shift during the measurement or process for cutting-edge chips below 40 nm. We present the optimal permutation of power transmission lines to reduce electromagnetic influence in high-technology nano fabs. In this study, the magnetic field was reduced using a mirror array power cable system, and simulation results predicted the best permutations to decrease the electromagnetic interference (EMI) value to below 0.4 mG in a working space without any shielding. Furthermore, this innovative method will lower the cost of high-technology nano fabs, especially for the 28 nm process. The motivation behind this paper is to find the ideal permutation of power transmission lines with a three-phase, four-cable framework to decrease the EMI in high-technology nano fabs. In this study, the electromagnetic interference was diminished using the ideal-permutation methodology without investing or using additional energy, labor, or apparatus. Moreover, this advanced methodology will help increase the effectiveness and reduce the costs of nano fabs. The mathematical and experimental results of the study are presented with analysis.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3705
Author(s):  
Kai Chen ◽  
Yi Yue ◽  
Yuejin Tang

Railway power transmission lines (RPTL) are power lines that provide nontraction power supply for railways, such as communications and signals along the railway. With the advancement of technology, power cables are being used more and more widely. Operational experience has shown that during the operation of power cables, abnormal heat is often caused by fault factors such as poor joint crimping and severe partial discharge caused by insulation defects, leading to cable burns in extreme cases. Distributed temperature sensors (DTS), a kind of spatial continuous temperature sensor using sensing optical fiber, can measure the temperature along the cable and are expected to realize on-line monitoring and positioning of cable heating faults. This paper first builds a finite element model of the cable under various faults to calculate the distribution characteristics of the temperature field of the faulty cable. Then the results are verified through experiments with the external sensing fiber and the artificially manufactured heating points of the cable. The conclusions show that it is feasible to use a distributed sensing fiber to monitor and locate the heating fault of power cable.


2016 ◽  
Vol 2016 (4) ◽  
pp. 8-10 ◽  
Author(s):  
B.I. Kuznetsov ◽  
◽  
A.N. Turenko ◽  
T.B. Nikitina ◽  
A.V. Voloshko ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1561
Author(s):  
Hao Chen ◽  
Zhongnan Qian ◽  
Chengyin Liu ◽  
Jiande Wu ◽  
Wuhua Li ◽  
...  

Current measurement is a key part of the monitoring system for power transmission lines. Compared with the conventional current sensor, the distributed, self-powered and contactless current sensor has great advantages of safety and reliability. By integrating the current sensing function and the energy harvesting function of current transformer (CT), a time-multiplexed self-powered wireless sensor that can measure the power transmission line current is presented in this paper. Two operating modes of CT, including current sensing mode and energy harvesting mode, are analyzed in detail. Through the design of mode-switching circuit, harvesting circuit and measurement circuit are isolated using only one CT secondary coil, which eliminates the interference between energy harvesting and current measurement. Thus, the accurate measurement in the current sensing mode and the maximum energy collection in the energy harvesting mode are both realized, all of which simplify the online power transmission line monitoring. The designed time-multiplexed working mode allows the sensor to work at a lower transmission line current, at the expense of a lower working frequency. Finally, the proposed sensor is verified by experiments.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Vedanta Pradhan ◽  
O. D. Naidu ◽  
Sinisa Zubic ◽  
Patrick Cost

Sign in / Sign up

Export Citation Format

Share Document