scholarly journals Control of EMI in High-Technology Nano Fab by Exploitation Power Transmission Method with Ideal Permutation

2021 ◽  
Vol 11 (24) ◽  
pp. 11984
Author(s):  
Yu-Lin Song ◽  
Manoj Kumar Reddy ◽  
Hung-Yi Lin ◽  
Luh-Maan Chang

There are many high-power electrical cables around and within semiconductor foundries. These cables are the source of extremely low-frequency (ELF < 300 Hz) magnetic fields that affect the tools which operate by the function of electronic beams. Miss operation (MO) happens because the ELF magnetic fields induce beam shift during the measurement or process for cutting-edge chips below 40 nm. We present the optimal permutation of power transmission lines to reduce electromagnetic influence in high-technology nano fabs. In this study, the magnetic field was reduced using a mirror array power cable system, and simulation results predicted the best permutations to decrease the electromagnetic interference (EMI) value to below 0.4 mG in a working space without any shielding. Furthermore, this innovative method will lower the cost of high-technology nano fabs, especially for the 28 nm process. The motivation behind this paper is to find the ideal permutation of power transmission lines with a three-phase, four-cable framework to decrease the EMI in high-technology nano fabs. In this study, the electromagnetic interference was diminished using the ideal-permutation methodology without investing or using additional energy, labor, or apparatus. Moreover, this advanced methodology will help increase the effectiveness and reduce the costs of nano fabs. The mathematical and experimental results of the study are presented with analysis.

2011 ◽  
Vol 356-360 ◽  
pp. 2711-2717
Author(s):  
Yu Lin Song ◽  
Chwen Yu ◽  
Feng Chang Chuang ◽  
Ying Cheng Tseng ◽  
Jyun Yu Zou ◽  
...  

We present optimal permutation with 2.5-D power transmission lines system to reduce electro-magnetic influence at high technology nano-Fab. In this study, the magnetic field was lessened by mirror array power cable system, and simulation of results predicted the best permutations to decrease electromagnetic influence (EMI) value below 0.28 mG at working space without any shielding. Furthermore, this innovative method will cost down at high technology nano-Fab especially for 28 nanometer process.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1136
Author(s):  
Azhan Fikry ◽  
Siow Chun Lim ◽  
Mohd Zainal Abidin Ab Kadir

Background: There has been rising concern amongst the public regarding their home's proximity to high tension power transmission lines. The primary cause of fear is the impact of the electromagnetic interference (EMI) radiation on the nearby occupants' health. Despite the presence of national permissible limits of EMI radiation, there is still lack of information with regards to the EMI radiation of the types of power lines configuration in Malaysia. Methods: The electric and magnetic fields of several selected power transmission lines were simulated using the EMFACDC software program from the recommendation ITU-T K.90. Five types of power transmission lines available in Malaysia are considered. Results: It was found that the simulated electric and magnetic field levels at all the power lines' right of way (ROW) boundary complies with the prescribed exposure limit. However, the electromagnetic fields (EMF) level increases significantly as the separation distance is reduced from 30m. For a more conservative approach, the ROW can be set at 30m across all transmission voltage level and corridor area condition. Conclusion: It can be concluded that Malaysia's power transmission lines are within the prescribed exposure limits. To further minimize the electric and magnetic field level, it is recommended that the residential building should be built at least 30 meters away from the power transmission lines, especially for the 275kV double circuit, 275/132kV quadruple circuit, and 500kV double circuit lines.


2020 ◽  
Vol 190 (3) ◽  
pp. 289-296
Author(s):  
Majid Bagheri Hosseinabadi ◽  
Narges Khanjani ◽  
Mohammad Hossein Ebrahimi ◽  
Jamal Biganeh

Abstract Extremely low-frequency magnetic fields (ELF-MFs) have raised some concerns due to their possible effects on workers’ health. In this study ELF-MFs were measured in different units of the thermal power plant based on gridding the indoor space. The exposure level was measured by spot measurement based on the IEEE Std C95.3.1 and then simulated in units with the highest magnetic field intensity by using ArcGIS software. The operators and balance of plant (BOP) technicians (12.64 ± 9.74 μT) and office workers (2.41 ± 1.22 μT) had the highest and lowest levels of both measured and estimated ELF-MFs exposure. The highest measured ELF-MFs were in the vicinity of the power transmission lines in the transformers’ building (48.2 μT). Our simulation showed the high and low exposure areas and ranked exposure well; but, the actual measurements of ELF-MFs exposure were in all cases higher than the estimated values, which means we still need to improve our estimations.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3705
Author(s):  
Kai Chen ◽  
Yi Yue ◽  
Yuejin Tang

Railway power transmission lines (RPTL) are power lines that provide nontraction power supply for railways, such as communications and signals along the railway. With the advancement of technology, power cables are being used more and more widely. Operational experience has shown that during the operation of power cables, abnormal heat is often caused by fault factors such as poor joint crimping and severe partial discharge caused by insulation defects, leading to cable burns in extreme cases. Distributed temperature sensors (DTS), a kind of spatial continuous temperature sensor using sensing optical fiber, can measure the temperature along the cable and are expected to realize on-line monitoring and positioning of cable heating faults. This paper first builds a finite element model of the cable under various faults to calculate the distribution characteristics of the temperature field of the faulty cable. Then the results are verified through experiments with the external sensing fiber and the artificially manufactured heating points of the cable. The conclusions show that it is feasible to use a distributed sensing fiber to monitor and locate the heating fault of power cable.


Sign in / Sign up

Export Citation Format

Share Document