Numerical Simulation of a Novel Solar-Powered Hybrid Energy System with Cooling and Heating

2011 ◽  
Vol 374-377 ◽  
pp. 470-474
Author(s):  
Hui Long Luo ◽  
Xiao Chen ◽  
Jin Hui Peng

A novel solar-powered hybrid energy system with cooling and heating is presented, which consists of an adsorption ice maker subsystem and water heater subsystem. It can be used as an ice maker and water heater hybrid system or a single water heater respectively according to incident solar radiation intensity. A numerical model is developed to predict the performances of the hybrid energy system. Performance simulation and analysis on the hybrid energy system have been made. Simulation results show that, under the climatic conditions of daily solar radiation being about 12-20MJ/m2, the hybrid energy system can be used as an ice maker and a water heater effectively, its daily solar cooling COP (coefficient of performance) is about 0.173 - 0.181, the daily heating coefficient of performance is about 0.294-0.327.

2019 ◽  
Vol 17 ◽  
pp. 550-554 ◽  
Author(s):  
I. Riverón ◽  
◽  
J.F. Gómez ◽  
B. González ◽  
J. Albino Méndez

2017 ◽  
Author(s):  
Askin Guler Yigitoglu ◽  
Thomas Harrison ◽  
Michael Scott Greenwood

Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1581
Author(s):  
Wenqiang Zhu ◽  
Jiang Guo ◽  
Guo Zhao ◽  
Bing Zeng

The hybrid renewable energy system is a promising and significant technology for clean and sustainable island power supply. Among the abundant ocean energy sources, tidal current energy appears to be very valuable due to its excellent predictability and stability, particularly compared with the intermittent wind and solar energy. In this paper, an island hybrid energy microgrid composed of photovoltaic, wind, tidal current, battery and diesel is constructed according to the actual energy sources. A sizing optimization method based on improved multi-objective grey wolf optimizer (IMOGWO) is presented to optimize the hybrid energy system. The proposed method is applied to determine the optimal system size, which is a multi-objective problem including the minimization of annualized cost of system (CACS) and deficiency of power supply probability (DPSP). MATLAB software is utilized to program and simulate the hybrid energy system. Optimization results confirm that IMOGWO is feasible to optimally size the system, and the energy management strategy effectively matches the requirements of system operation. Furthermore, comparison of hybrid systems with and without tidal current turbines is undertaken to confirm that the utilization of tidal current turbines can contribute to enhancing system reliability and reducing system investment, especially in areas with abundant tidal energy sources.


Author(s):  
Xiao Xu ◽  
Weihao Hu ◽  
Di Cao ◽  
Wen Liu ◽  
Qi Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document