Measure of the Photosynthetic Efficiency of the Ficus Altissima Leaves by Using Photo-Acoustic Tomography Spectroscopy Technology

2011 ◽  
Vol 415-417 ◽  
pp. 1219-1224 ◽  
Author(s):  
Guang Hua Lie ◽  
Gan Wen Lie ◽  
Zhi Lie Tang ◽  
Ting Yang ◽  
Wei Dong ◽  
...  

By using a new kind of single-beam normalized photo-acoustic tomography spectroscopy (PAS-CT) technology with non-damage and weak signals detection, the photo-acoustic tomography spectroscopy, optical absorption properties and photosynthetic pigment content of the green and yellow leaves of Ficus altissima were studied. The results showed that: photo-acoustic tomography spectroscopy could be obtained from different chopping frequency. The more photosynthetic pigment content the leaves of Ficus altissima contain, the bigger optical absorption coefficient and the higher photosynthetic efficiency they have. In the research, we could find that the photosynthetic pigment content of the yellow leaves of Ficus altissma is lower than that of the green ones. As a result, the optical absorption coefficient and the photosynthetic efficiency of the yellow ones were smaller and lower than the green ones. The photo-acoustic tomography spectroscopy technology can be a kind of non-damage detection to confirm the growth of trees. It could make benefits to the controlled environmental forestry and increase forest production to meet the need of forest for 6 billion people. The research showed high practical value to the study and application of the photosynthesis of plants.

2012 ◽  
Vol 535-537 ◽  
pp. 2429-2433
Author(s):  
Guang Hua Lie ◽  
Gan Wen Lie ◽  
Xiao Qiong Feng ◽  
Ting Yang ◽  
Dao Qing Zhang ◽  
...  

By using a new kind of single-beam normalized photo-acoustic tomography spectroscopy (PAS-CT) technology with non-damage detection, the photo-acoustic tomography spectroscopy, optical absorption properties and photosynthetic pigment content of the green and yellow leaves of Michelia alba were studied. The results show that: photo-acoustic tomography spectroscopy could be obtained from different chopping frequency and different sample position. The more photosynthetic pigment content the leaves of Michelia alba contains, the bigger optical absorption coefficient and the higher photosynthetic efficiency they have. In the research, we could find that the photosynthetic pigment content of the green leaves of Michelia alba is higher than that of the yellow ones. As a result, the optical absorption coefficient and the photosynthetic efficiency of the green ones are higher than the yellow ones. The photo-acoustic tomography spectroscopy technology could be a kind of non-damage detection to confirm the growth of trees.


2013 ◽  
Vol 807-809 ◽  
pp. 1010-1014
Author(s):  
Gan Wen Lie ◽  
Guang Hua Lie ◽  
Ding Chao Pan ◽  
Long Hua Ye ◽  
Dong Yu Li

By using a new kind of single-beam normalized photo-acoustic tomography spectroscopy (PAS-CT) technology with non-damage detection, the photo-acoustic tomography spectroscopy and optical absorption properties of green and yellow leaves ofBauhinia blakeanawere studied. The results show that: the photo-acoustic tomography spectroscopy ofBauhinia blakeanaleaves could be obtained from different chopping frequency and different sample positions, and photosynthetic pigment content of their leaves is closely related to their photosynthetic intensity. The more photosynthetic pigment content the leaves ofBauhinia blakeanacontain, the bigger optical absorption coefficient and the higher photosynthetic efficiency they have. The photosynthetic pigment content of the green leaves ofBauhinia blakeanais higher than that of the yellow ones. As a result, the photosynthesis of green leaves is better than that of the yellow ones. According to the results of our research, the photosynthetic efficiency ofBauhinia blakeanacould be improved and its growth time could be effectively controlled to enhance the growth ofBauhinia blakeana. Furthermore, it could play an important role on the development of forestry, and meet the need of forest for 6 billion people. The research showed high science value to the study and applications of the photosynthesis of plants.


2012 ◽  
Vol 550-553 ◽  
pp. 1443-1447
Author(s):  
Guang Hua Lie ◽  
Gan Wen Lie ◽  
Han Lan Ke ◽  
Ting Yang ◽  
Dong Yu Li ◽  
...  

By using a new kind of single-beam normalized photo-acoustic tomography spectroscopy (PAS-CT) technology with non-damage detection, the photo-acoustic tomography spectroscopy, optical absorption properties and photosynthetic pigment content of the green and yellow leaves of Cinnamomum camphora were studied. The results show that: photo-acoustic tomography spectroscopy could be obtained from different chopping frequency and different sample position. The more photosynthetic pigment content the leaves of Cinnamomum camphora contains, the bigger optical absorption coefficient and the higher photosynthetic efficiency they have. In the research, we could find that the photosynthetic pigment content of the green leaves of Cinnamomum camphora is higher than that of the red ones. As a result, the optical absorption coefficient and the photosynthetic efficiency of the green ones are higher than the red ones. The photo-acoustic tomography spectroscopy technology could be a kind of non-damage detection to confirm the growth of trees.


2013 ◽  
Vol 641-642 ◽  
pp. 979-983
Author(s):  
Guang Hua Lie ◽  
Gan Wen Lie ◽  
Hua Lin Cai ◽  
Han Lan Ke ◽  
Ding Chao Pan

By using a new kind of single-beam normalized photo-acoustic tomography spectroscopy (PAS-CT) technology with non-damage detection, the photo-acoustic tomography spectroscopy, optical absorption properties and photosynthetic pigment content of the green and yellow leaves of Osmanthus fragrans were studied. The results show that: photo-acoustic tomography spectroscopy could be obtained from different chopping frequency and different sample position. The more photosynthetic pigment content the leaves of Osmanthus fragrans contains, the bigger optical absorption coefficient and the higher photosynthetic efficiency they have. In the research, we could find that the photosynthetic pigment content of the green leaves of Osmanthus fragrans is higher than that of the yellow ones. As a result, the optical absorption coefficient and the photosynthetic efficiency of the green ones are higher than the yellow ones. The photo-acoustic tomography spectroscopy technology could be a kind of non-damage detection to confirm the growth of trees.


2013 ◽  
Vol 807-809 ◽  
pp. 596-600
Author(s):  
Gan Wen Lie ◽  
Guang Hua Lie ◽  
Hou Zhu Mao ◽  
Dong Yu Li

By using a new kind of single-beam normalized photo-acoustic tomography spectroscopy (PAS-CT) technology with non-damage detection, the photo-acoustic tomography spectroscopy, optical absorption properties and photosynthetic pigment content of green and red leaves ofBischofia javanicawere studied. The results show that: the photo-acoustic tomography spectroscopy ofBischofia javanicaleaves could be obtained from different chopping frequency and different sample positions, and photosynthetic pigment content of their leaves is closely related to their photosynthetic intensity. The more photosynthetic pigment content the leaves ofBischofia javanicacontain, the bigger optical absorption coefficient and the higher photosynthetic efficiency they have. The photosynthetic pigment content of the green leaves ofBischofia javanicais higher than that of the red ones. As a result, the photosynthesis of green leaves is better than that of the red ones. According to the results of our research, the photosynthetic efficiency ofBischofia javanicacould be improved and its growth time could be effectively controlled to enhance the growth ofBischofia javanica. Furthermore, it could play an important role on the development of forestry, and meet the need of forest for 6 billion people. The research showed high science value to study and applications of the photosynthesis of plants.


1987 ◽  
Vol 6 (2) ◽  
pp. 173-181 ◽  
Author(s):  
F. Borghese ◽  
P. Denti ◽  
R. Saija ◽  
G. Toscano ◽  
O. I. Sindoni

1991 ◽  
Vol 69 (3-4) ◽  
pp. 317-323 ◽  
Author(s):  
Constantinos Christofides ◽  
Andreas Mandelis ◽  
Albert Engel ◽  
Michel Bisson ◽  
Gord Harling

A photopyroelectric spectrometer with real-time and(or) self-normalization capability was used for both conventional transmission and thermal-wave spectroscopic measurements of amorphous Si thin films, deposited on crystalline Si substrates. Optical-absorption-coefficient spectra were obtained from these measurements and the superior dynamic range of the out-of-phase (quadrature) photopyroelectric signal was established as the preferred measurement method, owing to its zero-background compensation capability. An extension of a photopyroelectric theoretical model was established and successfully tested in the determination of the optical absorption coefficient and the thermal diffusivity of the sample under investigation. Instrumental sensitivity limits of βt ≈ 5 × 10−3 were demonstrated.


1996 ◽  
Vol 426 ◽  
Author(s):  
B. Pashmakov ◽  
H. Fritzsche ◽  
B. Claflin

AbstractThe electrical conductance and optical absorption coefficient of microcrystalline indium oxide (c – In2 O 3-x ) can be changed reversibly by several orders of magnitude by photoreduction and reoxidation. Photoreduction is achieved by exposure to ultraviolet light hv ≥ 3.5eV in vacuum or an inert gas. The effects are similar to those previously observed in amorphous In2 O3-x


Sign in / Sign up

Export Citation Format

Share Document