Energy Storage Technologies in Renewable Energy Electricity Generation System

2012 ◽  
Vol 462 ◽  
pp. 225-232 ◽  
Author(s):  
Rui Cao ◽  
Zi Long Yang

Today,there is a continuous need for more clean energy, this need has facilitated the increasing of distributed generation technology and renewable energy generation technology. In order to ensure the supply of renewable energy generation continuously and smoothly in distributed power generation system, need to configure a amount of energy storage system for storing excess power generated. This article outlines some energy storage technologies which are used in power systems in the current and future, summarizes the working principles and features of several storage units, provides the basis for the design of energy storage system.

Author(s):  
Yash Gupta

Abstract: As renewable energy penetration rises, integrating it will become a major issue that will necessitate new generating support infrastructure; an energy storage system is one answer to this problem. Battery technologies, in particular, have a wide range of energy and power output capabilities, making them perfect for integration. In many regions where renewable energy generation systems will be implemented, distributed energy storage on distribution grids may be required. When the sun is not shining or the weather is cloudy, an energy storage system is required for solar photovoltaic systems. For PV applications, a battery is used as an energy storage system. Keywords: Energy storage system, Battery, Simulink and modelling.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
H. Lan ◽  
S. Wen ◽  
Q. Fu ◽  
D. C. Yu ◽  
L. Zhang

The consumption of conventional energy sources and environmental concerns have resulted in rapid growth in the amount of renewable energy introduced to power systems. With the help of distributed generations (DG), the improvement of power loss and voltage profile can be the salient benefits. However, studies show that improper placement and size of energy storage system (ESS) lead to undesired power loss and the risk of voltage stability, especially in the case of high renewable energy penetration. To solve the problem, this paper sets up a microgrid based on IEEE 34-bus distribution system which consists of wind power generation system, photovoltaic generation system, diesel generation system, and energy storage system associated with various types of load. Furthermore, the particle swarm optimization (PSO) algorithm is proposed in the paper to minimize the power loss and improve the system voltage profiles by optimally managing the different sorts of distributed generations under consideration of the worst condition of renewable energy production. The established IEEE 34-bus system is adopted to perform case studies. The detailed simulation results for each case clearly demonstrate the necessity of optimal management of the system operation and the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document