Numerical Simulation of 2D Circular Dam-Break Flows with WENO Schemes

2012 ◽  
Vol 468-471 ◽  
pp. 2201-2205
Author(s):  
G.C. Sun ◽  
Wen Li Wei ◽  
Y.L. Liu ◽  
Xi Wang ◽  
Ming Qin Liu

This paper is concerned with a mathematical model for simulating hydrodynamics of 2D circular dam-break flows with the WENO scheme and the Finite Volume Method. The time discretization uses the Runge-Kutta TVD scheme. By using the proposed model, we calculated the flow property of circular dam-break, and obtained the flow velocity field distributions. The calculated results show that the WENO scheme has higher accuracy and better stability, and has the ability to automatically capture shock waves, and may suppress the oscillations of numerical solution. This model can effectively simulate the hydrodynamics of 2D river flow with irregular boundaries.

2011 ◽  
Vol 393-395 ◽  
pp. 1295-1299
Author(s):  
Y.L. Pan ◽  
W.L. Wei ◽  
Y.L. Liu

This paper is concerned with a mathematical model for simulating hydrodynamics of 2D flood flows with the WENO scheme and the Finite Volume Method on unstructured grid. The time discretization uses the Runge-Kutta TVD scheme. By using the proposed model, we calculated the flow property of dam-break, and obtained the flow velocity field distributions. The calculated results show that the WENO scheme has higher accuracy and better stability, and has the ability to automatically capture shock waves, and may suppress the oscillations of numerical solution. This model can effectively simulate the hydrodynamics of 2D river flow with irregular boundaries.


The paper is dedicated to study a numerical model simulating dam-break based on two dimensional nonlinear shallow water equations (2D-NSWE). Finite Volume Method-Godunov type is applied to discretize this equation. Roe scheme is utilized to approximate Riemann problem, meanwhile method of flux difference splitting is implemented to construct numerical solvers of SWE. Besides, the semi implicit scheme is also invoked to solve friction term in case of high roughness coefficient. The proposed model is verified through a comparison between computed results and empirical data of two reference tests. A dam break flow over floodable area with different roughness coefficients is also researched. A total collapsed dam scenario of an arch dam-Nam Chien in Vietnam is simulated by the proposed model. Several hydraulic characteristics such as flood extent, arrival time and time histories of water depth at different gauges are estimated with different grid sizes.


2011 ◽  
Vol 130-134 ◽  
pp. 3620-3623
Author(s):  
Ming Qin Liu ◽  
Y.L. Liu

This paper was concerned with a vertical two-dimensional (2D) flow model with free surface. The water governing equations were discretized with finite difference method. The function of volume method was employed to track the moving free surface. The model was used to predict the characteristics of dam-break flow in a 2D vertical plane. The surface profile and time averaged velocity were calculated, which shows the proposed model can be capable of capturing sharp water and gas interface configuration as time elapses.


2009 ◽  
Vol 283-286 ◽  
pp. 183-189 ◽  
Author(s):  
Rodrigo Perito Cardoso ◽  
A.M. Maliska ◽  
C.R. Maliska

This work presents a theoretical and experimental study of nickel deposition on iron samples at relatively high pressure using a pulsed DC glow discharge. The deposition process was conducted in conditions similar to that used for plasma sintering, using the confined anode-cathode configuration. The cathode was made from nickel commercially pure and the samples were made from interstitial free steel and sintered pure iron. The samples were characterized by mass weight gain, scanning electron microscopy and energy-dispersive X-ray microanalysis. The deposition process was mathematically modeled and the model was numerically solved using a conservative finite-volume method. The experiments demonstrated that the deposition occurs at a constant rate, with the mass flux changing linearly with the cathode voltage in the range of parameters considered. The results obtained from the diffusion model applied to the sample presented good agreement with the experimental values. Concerning the gas phase, the proposed model helped us to clarify some phenomenological aspects of the process. However, further studies, principally in the area of electrical discharges, are needed to permit a complete comprehension of this process.


Mathematics ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 211 ◽  
Author(s):  
Haoyu Dong ◽  
Changna Lu ◽  
Hongwei Yang

We develop a Lax–Wendroff scheme on time discretization procedure for finite volume weighted essentially non-oscillatory schemes, which is used to simulate hyperbolic conservation law. We put more focus on the implementation of one-dimensional and two-dimensional nonlinear systems of Euler functions. The scheme can keep avoiding the local characteristic decompositions for higher derivative terms in Taylor expansion, even omit partly procedure of the nonlinear weights. Extensive simulations are performed, which show that the fifth order finite volume WENO (Weighted Essentially Non-oscillatory) schemes based on Lax–Wendroff-type time discretization provide a higher accuracy order, non-oscillatory properties and more cost efficiency than WENO scheme based on Runge–Kutta time discretization for certain problems. Those conclusions almost agree with that of finite difference WENO schemes based on Lax–Wendroff time discretization for Euler system, while finite volume scheme has more flexible mesh structure, especially for unstructured meshes.


2020 ◽  
Vol 20 (2) ◽  
pp. 251-272
Author(s):  
Christoph Erath ◽  
Robert Schorr

AbstractMany problems in electrical engineering or fluid mechanics can be modeled by parabolic-elliptic interface problems, where the domain for the exterior elliptic problem might be unbounded. A possibility to solve this class of problems numerically is the non-symmetric coupling of finite elements (FEM) and boundary elements (BEM) analyzed in [H. Egger, C. Erath and R. Schorr, On the nonsymmetric coupling method for parabolic-elliptic interface problems, SIAM J. Numer. Anal. 56 2018, 6, 3510–3533]. If, for example, the interior problem represents a fluid, this method is not appropriate since FEM in general lacks conservation of numerical fluxes and in case of convection dominance also stability. A possible remedy to guarantee both is the use of the vertex-centered finite volume method (FVM) with an upwind stabilization option. Thus, we propose a (non-symmetric) coupling of FVM and BEM for a semi-discretization of the underlying problem. For the subsequent time discretization we introduce two options: a variant of the backward Euler method which allows us to develop an analysis under minimal regularity assumptions and the classical backward Euler method. We analyze both, the semi-discrete and the fully-discrete system, in terms of convergence and error estimates. Some numerical examples illustrate the theoretical findings and give some ideas for practical applications.


2000 ◽  
Vol 126 (4) ◽  
pp. 253-262 ◽  
Author(s):  
J. S. Wang ◽  
H. G. Ni ◽  
Y. S. He

2011 ◽  
Vol 130-134 ◽  
pp. 2993-2996
Author(s):  
Ming Qin Liu ◽  
Y.L. Liu

The purpose of this paper is to present a 2D depth-averaged model under orthogonal curvilinear coordinates for simulating two-dimensional circular dam-break flows. The proposed model uses an orthogonal curvilinear coordinate system efficiently and accurately to simulate the flow field with irregular boundaries. As for the numerical solution procedure, The SIMPLEC solution procedure has been used for the transformed governing equations in the transformed domain. Practical application of the model is illustrated by an example, which demonstrates that the mathematical model can capture hydraulic discontinuities accurately such as steep fronts, hydraulic jump and drop, etc.


Author(s):  
P. Adami ◽  
F. Martelli

A 3D CFD simulation of turbulent reactive flows is discussed. The original compressible version of the solver HybFlow designed for turbine rows investigation is here applied for low speed burning flow. A conserved scalar approach is considered to simulate the turbulent reacting flow field of non-premixed flames. The spatial discretization is based on an upwind finite volume method for unstructured grids using the Roe’s Riemann solver with a non-linear TVD scheme. The steady state solution is computed by means of an implicit relaxed Newton method. The linear solver is GMRES coupled with an ILU(0) preconditioning scheme. The turbulence chemistry interaction is described using a presumed β-PDF Flamelet approach. Two test applications are here presented to verify the methodology characteristics for a pilot-jet turbulent flame and a bluff-body stabilized flame both using CH4. A model combustor supplied with propane is also briefly shown as an example of application to a more realistic configuration.


Sign in / Sign up

Export Citation Format

Share Document