hyperbolic conservation law
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 5)

H-INDEX

8
(FIVE YEARS 0)

Fluids ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 16
Author(s):  
Valeriy Nikonov

One of the most important and complex effects in compressible fluid flow simulation is a shock-capturing mechanism. Numerous high-resolution Euler-type methods have been proposed to resolve smooth flow scales accurately and to capture the discontinuities simultaneously. One of the disadvantages of these methods is a numerical viscosity for shocks. In the shock, the flow parameters change abruptly at a distance equal to the mean free path of a gas molecule, which is much smaller than the cell size of the computational grid. Due to the numerical viscosity, the aforementioned Euler-type methods stretch the parameter change in the shock over few grid cells. We introduce a semi-Lagrangian Godunov-type method without numerical viscosity for shocks. Another well-known approach is a method of characteristics that has no numerical viscosity and uses the Riemann invariants or solvers for water hammer phenomenon modeling, but in its formulation the convective terms are typically neglected. We use a similar approach to solve the one-dimensional adiabatic gas dynamics equations, but we split the equations into parts describing convection and acoustic processes separately, with corresponding different time steps. When we are looking for the solution to the one-dimensional problem of the scalar hyperbolic conservation law by the proposed method, we additionally use the iterative Godunov exact solver, because the Riemann invariants are non-conserved for moderate and strong shocks in an ideal gas. The proposed method belongs to a group of particle-in-cell (PIC) methods; to the best of the author’s knowledge, there are no similar PIC numerical schemes using the Riemann invariants or the iterative Godunov exact solver. This article describes the application of the aforementioned method for the inviscid Burgers’ equation, adiabatic gas dynamics equations, and the one-dimensional scalar hyperbolic conservation law. The numerical analysis results for several test cases (e.g., the standard shock-tube problem of Sod, the Riemann problem of Lax, the double expansion wave problem, the Shu–Osher shock-tube problem) are compared with the exact solution and Harten’s data. In the shock for the proposed method, the flow properties change instantaneously (with an accuracy dependent on the grid cell size). The iterative Godunov exact solver determines the accuracy of the proposed method for flow discontinuities. In calculations, we use the iteration termination condition less than 10−5 to find the pressure difference between the current and previous iterations.





Author(s):  
Gopikrishnan Chirappurathu Remesan

A uniform bounded variation estimate for finite volume approximations of the nonlinear scalar conservation law $\partial_t \alpha + \mathrm{div}(\boldsymbol{u}f(\alpha)) = 0$ in two and three spatial dimensions with an initial data of bounded variation is established.  We assume that the divergence of the velocity $\mathrm{div}(\boldsymbol{u})$ is of bounded variation instead of the classical assumption that $\mathrm{div}(\boldsymbol{u})$ is zero. The finite volume schemes analysed in this article are set on nonuniform Cartesian grids. A uniform bounded variation estimate for finite volume solutions of the conservation law $\partial_t \alpha + \mathrm{div}(\boldsymbol{F}(t,\boldsymbol{x},\alpha)) = 0$, where $\mathrm{div}_{\boldsymbol{x}}\boldsymbol{F} \not=0$ on nonuniform Cartesian grids is also proved. Such an estimate provides compactness for finite volume approximations in $L^p$ spaces, which is essential to prove the existence of a solution for a partial differential equation with nonlinear terms in $\alpha$, when the uniqueness of the solution is not available. This application is demonstrated by establishing the existence of a weak solution for a model that describes the evolution of initial stages of breast cancer proposed by S. J. Franks et al.~\cite{Franks2003424}. The model consists of four coupled variables: tumour cell concentration, tumour cell velocity--pressure, and nutrient concentration, which are governed by a hyperbolic conservation law, viscous Stokes system, and Poisson equation, respectively.





2021 ◽  
Vol 53 (4) ◽  
pp. 4417-4444
Author(s):  
Xiaoqian Gong ◽  
Matthias Kawski


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhijian Duan ◽  
Gongnan Xie

Purpose The discontinuous Galerkin finite element method (DGFEM) is very suited for realizing high order resolution approximations on unstructured grids for calculating the hyperbolic conservation law. However, it requires a significant amount of computing resources. Therefore, this paper aims to investigate how to solve the Euler equations in parallel systems and improve the parallel performance. Design/methodology/approach Discontinuous Galerkin discretization is used for the compressible inviscid Euler equations. The multi-level domain decomposition strategy was used to deal with the computational grids and ensure the calculation load balancing. The total variation diminishing (TVD) Runge–Kutta (RK) scheme coupled with the multigrid strategy was employed to further improve parallel efficiency. Moreover, the Newton Block Gauss–Seidel (GS) method was adopted to accelerate convergence and improve the iteration efficiency. Findings Numerical experiments were implemented for the compressible inviscid flow problems around NACA0012 airfoil, over M6 wing and DLR-F6 configuration. The parallel acceleration is near to a linear convergence. The results indicate that the present parallel algorithm can reduce computational time significantly and allocate memory reasonably, which has high parallel efficiency and speedup, and it is well-suited to large-scale scientific computational problems on multiple instruction stream multiple data stream model. Originality/value The parallel DGFEM coupled with TVD RK and the Newton Block GS methods was presented for hyperbolic conservation law on unstructured meshes.



Sign in / Sign up

Export Citation Format

Share Document