3D Cavitations Turbulent Transient Calculation in the Francis Turbine Model

2012 ◽  
Vol 479-481 ◽  
pp. 2466-2470
Author(s):  
Dun Zhang ◽  
Yuan Zheng

Analysis had been carried out, based on the three-dimensional transient viscous turbulent calculation of a Francis turbine full flow field, the complete cavitations model and the two-phase mixture flow model were combined during the calculation, more accurate numerical solution had been obtained. According to the simulation results, the site and extent of cavitations in the turbine flow were reflected within the specific conditions, and were more consistent with the cavitations phenomenon observed in the model experiment, also provided a reference for the more in-depth research.

2013 ◽  
Vol 662 ◽  
pp. 643-647 ◽  
Author(s):  
Hong Ming Zhang ◽  
Li Xiang Zhang

The paper presents the numerical prediction of sediment erosion on Francis turbine blades using CFD code. The 3-D turbulent particulate-liquid two-phase flow equations are employed in this study. The computing domain is discretized with a full three-dimensional mesh system of unstructured tetrahedral shapes. The finite volume method is used to solve the governing equations and the pressure-velocity coupling is handled via a Pressure Implicit with Splitting of Operators (PISO) procedure. Simulation results have shown that the sand erosion rate on pressure side is more than on the suction side of the blade. The numerical simulation results are consistent with the real situation.


Author(s):  
Sadao Kurosawa ◽  
Kiyoshi Matsumoto

In this paper, numerical method for predicting critical cavitation performance in a hydraulic turbine is presented. The prediction method is based on unsteady cavitation flow analysis to use bubble two-phase flow model. The prediction of the critical cavitation performance was carried out for the aixal hydraulic turbine and the francis turbine as a typical examples. Results compared to the experiment showed a good agreement for the volume of cavity and the performance drop off and it was recognized that this method could be used as an engineering tool of a hydraulic turbine development.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2399 ◽  
Author(s):  
Fengbo Yang ◽  
Xinyu Xue ◽  
Chen Cai ◽  
Zhu Sun ◽  
Qingqing Zhou

In recent years, multirotor unmanned aerial vehicles (UAVs) have become more and more important in the field of plant protection in China. Multirotor unmanned plant protection UAVs have been widely used in vast plains, hills, mountains, and other regions, and become an integral part of China’s agricultural mechanization and modernization. The easy takeoff and landing performances of UAVs are urgently required for timely and effective spraying, especially in dispersed plots and hilly mountains. However, the unclearness of wind field distribution leads to more serious droplet drift problems. The drift and distribution of droplets, which depend on airflow distribution characteristics of UAVs and the droplet size of the nozzle, are directly related to the control effect of pesticide and crop growth in different growth periods. This paper proposes an approach to research the influence of the downwash and windward airflow on the motion distribution of droplet group for the SLK-5 six-rotor plant protection UAV. At first, based on the Navier-Stokes (N-S) equation and SST k–ε turbulence model, the three-dimensional wind field numerical model is established for a six-rotor plant protection UAV under 3 kg load condition. Droplet discrete phase is added to N-S equation, the momentum and energy equations are also corrected for continuous phase to establish a two-phase flow model, and a three-dimensional two-phase flow model is finally established for the six-rotor plant protection UAV. By comparing with the experiment, this paper verifies the feasibility and accuracy of a computational fluid dynamics (CFD) method in the calculation of wind field and spraying two-phase flow field. Analyses are carried out through the combination of computational fluid dynamics and radial basis neural network, and this paper, finally, discusses the influence of windward airflow and droplet size on the movement of droplet groups.


2000 ◽  
Vol 71 (5) ◽  
pp. 153-160 ◽  
Author(s):  
Natsuo Hatta ◽  
Masaaki Omodaka ◽  
Fumitaka Nakajima ◽  
Hitoshi Fujimoto ◽  
Hirohiko Takuda

2012 ◽  
Vol 212-213 ◽  
pp. 1098-1102
Author(s):  
Bin Deng ◽  
Chang Bo Jiang ◽  
Zhi Xin Guan ◽  
Chao Shen

The numerical calculation and simulation of gas-liquid two-phase flows with interfacial deformations have nowadays become more and more popular issues in various scientific and industrial fields. In this study, a three-dimensional gas-liquid two-phase flow numerical model is presented for investigating interfacial flows. The finite volume method was used to discretize the governing equations. A High-resolution scheme of VOF method (STACS) is applied to capture the free surface. The paper outlines the methodology of STACS and its validation against three typical test cases used to verify its accuracy. The results show the STACS-VOF gives very satisfactory results for three-dimensional two-phase interfacial flows problem, and this scheme performs more accurate and less diffusive preserving interface sharpness and boundedness.


2005 ◽  
Vol 16 (01) ◽  
pp. 25-44 ◽  
Author(s):  
KANNAN N. PREMNATH ◽  
JOHN ABRAHAM

In this paper, three-dimensional computations of drop–drop interactions using the lattice Boltzmann method (LBM) are reported. The LBM multiphase flow model employed is evaluated for single drop problems and binary drop interactions. These include the verification of Laplace–Young relation for static drops, drop oscillations, and drop deformation and breakup in simple shear flow. The results are compared with experimental data, analytical solutions and numerical solutions based on other computational methods, as applicable. Satisfactory agreement is shown. Initial studies of drop–drop interactions involving the head-on collisions of drops in quiescent medium and off-center collision of drops in the presence of ambient shear flow are considered. As expected, coalescence outcome is observed for the range of parameters studied.


2015 ◽  
Vol 741 ◽  
pp. 531-535
Author(s):  
Hong Ming Zhang ◽  
Li Xiang Zhang

The paper presents the numerical analysis of erosive wear on the guide vanes of a Francis turbine using CFD code. The 3-D turbulent particulate-liquid two-phase flow equations are employed in this study. The computing domain is discretized with a full three-dimensional mesh system of unstructured tetrahedral shapes. The finite volume method is used to solve the governing equations and the pressure-velocity coupling is handled via a Pressure Implicit with Splitting of Operators (PISO) procedure. Simulation results have shown that the volume fraction of sand at the top of the guide vanes is higher than others and the maximum of volume fraction of sand is at same location with the maximum of sand erosion rate density. The erosive wear is more serious at the top of the guide vanes.


Sign in / Sign up

Export Citation Format

Share Document