critical cavitation
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 15)

H-INDEX

12
(FIVE YEARS 2)

Machines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 14
Author(s):  
Wei Li ◽  
Shuo Li ◽  
Leilei Ji ◽  
Xiaofan Zhao ◽  
Weidong Shi ◽  
...  

Based on CFD analysis technology, this paper studies the cavitation performance of an LNG submerged pump and the pressure pulsation characteristics under cavitation excitation. The variation laws of the waveform, amplitude and frequency of the pressure pulsation in the impeller of the LNG submerged pump under different flow rates and NPSHa are also analysed. By calculating the root mean square of the pressure coefficient of the low-frequency pulsation, the influence of the aggravation process of cavitation on the low-frequency pulsation in the LNG submerged pump is quantitatively analysed, and the characteristics of the pressure pulsation in the LNG submerged pump under the cavitation condition are revealed. The results show that with the increase in flow rate, the pressure pulsation in the impeller becomes stronger, periodically, and the amplitude decreases. The influence of cavitation on the pressure pulsation in the primary impeller is greater than that in the secondary impeller. When critical cavitation occurs, the low-frequency signal amplitude of pressure pulsation in the primary impeller increases and exceeds the blade frequency, becoming the main frequency.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 326
Author(s):  
Huiyan Zhang ◽  
Fan Meng ◽  
Yunhao Zheng ◽  
Yanjun Li

To reduce cavitation-induced pressure fluctuations in a mixed-flow pump under impeller inflow distortion, the dynamic pressure signal at different monitoring points of a mixed-flow pump with a dustpan-shaped inlet conduit under normal and critical cavitation conditions was collected using high-precision digital pressure sensors. Firstly, the nonuniformity of the impeller inflow caused by inlet conduit shape was characterized by the time–frequency-domain spectra and statistical characteristics of pressure fluctuation at four monitoring points (P4–P7) circumferentially distributed at the outlet of the inlet conduit. Then, the cavity distribution on the blade surface was captured by a stroboscope. Lastly, the characteristics of cavitation-induced pressure fluctuation were obtained by analyzing the time–frequency-domain spectra and statistical characteristic values of dynamic pressure signals at the impeller inlet (P1), guide vanes inlet (P2), and guide vanes outlet (P3). The results show that the flow distribution of impeller inflow is asymmetric. The pav values at P4 and P6 were the smallest and largest, respectively. Compared with normal conditions, the impeller inlet pressure is lower under critical cavitation conditions, which leads to low pav, pp-p and a main frequency amplitude at P1. In addition, the cavity covered the whole suction side under H = 13.6 m and 15.5 m, which led the pp-p and dominant frequency amplitude of pressure fluctuation at P2 and P3 under critical cavitation to be higher than that under normal conditions.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2293
Author(s):  
Jianwei Shi ◽  
Sijia Tao ◽  
Guangtai Shi ◽  
Wenwu Song

In the process of conveying a medium, when the inlet pressure is low, the cavitation phenomenon easily occurs in the pump, especially in the gas–liquid two-phase working condition. The occurrence of the cavitation phenomenon has a great impact on the performance of the multiphase pump. In this paper, the SST (sheard stress transport) k-ω turbulence model and ZGB (Zwart–Gerber–Belamri) cavitation model were used to simulate the helical axial flow multiphase pump (hereinafter referred to as the multiphase pump), and the experimental verification was carried out. The effect of gas volume fraction (GVF) on the energy loss characteristics in each cavitation stage of the multiphase pump is analyzed in detail. The study shows that the critical cavitation coefficient of the multiphase pump gradually decreases with the increase in GVF, which depresses the evolution of cavitation, and the cavitation performance of the multiphase hump is improved. The ratio of total loss and friction loss to total flow loss in the impeller fluid domain gradually increases with the development of cavitation, and the pressurization performance of the multiphase pump gradually decreases with the development of cavitation. The results of the study can provide theoretical guidance for the improvement of the performance of the multiphase pump.


Author(s):  
Weihui Xu ◽  
Xiaoke He ◽  
Xiao Hou ◽  
Zhihao Huang ◽  
Weishu Wang

AbstractCavitation is a phenomenon that occurs easily during rotation of fluid machinery and can decrease the performance of a pump, thereby resulting in damage to flow passage components. To study the influence of wall roughness on the cavitation performance of a centrifugal pump, a three-dimensional model of internal flow field of a centrifugal pump was constructed and a numerical simulation of cavitation in the flow field was conducted with ANSYS CFX software based on the Reynolds normalization group k-epsilon turbulence model and Zwart cavitation model. The cavitation can be further divided into four stages: cavitation inception, cavitation development, critical cavitation, and fracture cavitation. Influencing laws of wall roughness of the blade surface on the cavitation performance of a centrifugal pump were analyzed. Research results demonstrate that in the design process of centrifugal pumps, decreasing the wall roughness appropriately during the cavitation development and critical cavitation is important to effectively improve the cavitation performance of pumps. Moreover, a number of nucleation sites on the blade surface increase with the increase in wall roughness, thereby expanding the low-pressure area of the blade. Research conclusions can provide theoretical references to improve cavitation performance and optimize the structural design of the pump.


Author(s):  
Eunhwan Jeong ◽  
Byung Yun Kang ◽  
Soon Sam Hong ◽  
Dae Jin Kim ◽  
Chang Ho Choi

Abstract The thermodynamic effects on the suction performance of a liquid oxygen (LOX) pump, observed during liquid rocket engine combustion tests, were investigated. Owing to the pump rotational speed and inlet pressure variation in the short duration of the engine starting, LOX pump head drops occurred occasionally depending on the initial pump inlet condition. Because the engine tests were performed at various inlet temperature and pressure settings of the LOX pump, the resulting suction performance behaviors of the LOX pump were varied. The critical cavitation number, at which the pump head drops 3%, was considered as the main parameter for representing the pump suction performance. The suction performance behaviors shown in the engine tests were investigated based on the classical theory of thermodynamic effects on cavitation. The LOX pump component test results in water, the LOX pump assembly suction performance test results in liquid nitrogen, and the J-2 LOX pump test results available in the open literature were used in the analysis and comparison. It was found that the critical cavitation number ratio of a pump could be expressed as a function of the thermodynamic parameter Σ*. For a given LOX pump flow condition, Stepanoff’s B-factor was almost constant at the specified head drop condition; as a result, Brennen’s time scale ratio βwas not constant but varying with Σ*. The argument of the geometrical similarity of pump cavitation at the critical condition of the pump head drop was addressed in conjunction with the constancy of Stepanoff B-factor.


Author(s):  
Cong Wang ◽  
Yongxue Zhang ◽  
Jianjun Zhu ◽  
Zhiyi Yuan ◽  
Bohui Lu

An experimental study on gas–liquid two-phase flow characteristics in a low-specific-speed centrifugal pump is presented via employing multiple investigation techniques, such as visualization observation, measurements of acoustic emission and vibration, etc. Specially, three different flow conditions were inspected, namely gas locking initiation, critical cavitation with/without free-gas presence, etc. For gas locking, the drastic deterioration of the pump performance and the disrupted balance of shaft were observed. Especially, at low rotational speeds, the gas locking accompanied with intermittent or churn flow can be triggered by even lower inlet gas volumetric fractions. When it came to the cavitation flow, a small amount of gas entrainment could induce the rapid deterioration of cavitation and stimulate much higher amplitude in low-frequency band of shaft rotation. The relationship between the gas bubble trajectory and the vibration level under the backflow is discussed. The results reveal that the combined effect of the free-gas entrainment and cavitation on the pump instability is much stronger than that under natural cavitation or free-gas entrainment flow, whose fault diagnosis can be determined by the data manifested in different spectral segments.


Author(s):  
Yu Song ◽  
Honggang Fan ◽  
Zhenwei Huang

Cavitation phenomenon is inevitable in pumps with strong transient characteristics. Due to the presence of vapors, the pressure distribution in the impeller changes greatly, resulting in a different radial force distribution from that in non-cavitation condition. In the present article, the cavitation performance of double-suction pumps with different impeller–vane arrangements is studied using the renormalization group k–& turbulence model and the Zwart–Gerber–Belamri cavitation model. The radial force on the two impellers and the whole pump are calculated and compared under critical cavitation conditions. The radial force on different parts of impellers is investigated in detail. A strong influence of the radial force on the blades is detected for different impeller–vane arrangements. Then, the flow characters are analyzed in the mid-span of volute. The results show that axial flows are detected in volute near the outlet of the impellers, which is the main cause of the “two-impeller-interaction”.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Hyeon-Seok Shim ◽  
Kwang-Yong Kim

Abstract The effects of the cross-sectional area of a volute on suction recirculation and cavitation in a centrifugal pump were investigated. The pump performance and fluid flow were analyzed using both steady and unsteady three-dimensional Reynolds-averaged Navier–Stokes analyses. The shear stress transport (SST) model was adopted as a turbulence closure model, and a simplified Rayleigh–Plesset cavitation model and a homogeneous two-phase mixture model were used to simulate the cavitating flow inside the pump. A constant to determine the designed circumferential velocity of the volute was selected as the geometric parameter for a parametric study. The hydraulic efficiency, head coefficient, blockage in front of the impeller, and critical cavitation number for a head-drop of 3% were selected as the performance parameters to evaluate the hydraulic performance. The results show that unlike the blockage, the hydraulic and suction performances were affected significantly by the volute shape. Both steady and unsteady flow analyses showed that the onset and development of suction recirculation were relatively unaffected by the volute geometry and the best efficiency point of the pump.


Sign in / Sign up

Export Citation Format

Share Document