Multidisciplinary Object Compatibility Design Optimization Based on Simulated Annealing Algorithm

2012 ◽  
Vol 490-495 ◽  
pp. 2515-2519
Author(s):  
Bi Qiang Yu ◽  
Xiao Qun Wang ◽  
Lin Hao Wang

In studying Multidisciplinary Object Compatibility Design Optimization method for non-hierarchic system, Simulated Annealing algorithm is introduced to establish system level model , and the basic ideas and working principle is given. In the optimization of system level, the coupling relationship between different subsystems is improved by state accepting function which is embedded in constraint. In this way, abnormal program termination and premature convergence will be avoided and ideal global optimal solution will be achieved effectually. Then the method is proved by used in the optimization design of pendulous micromechanical accelerometer

2012 ◽  
Vol 178-181 ◽  
pp. 2871-2876
Author(s):  
Chao Wang ◽  
Feng Feng ◽  
Xin Chang ◽  
Chun Yu Guo ◽  
Yang Hao Liu

Hydrofoil is the important part of ship design and diverse motion equipment. The optimization design of hydrofoil section on lift-to-drag radio with genetic algorithm (GA) and simulated annealing algorithm are demonstrated, and the method on the hydrofoil section design of the propeller design will be done. Objective function and fitness of every individual are provided by flow solver of panel method. The optimization method on design of hydrofoil section on lift-to-drag is successfully used. The optimization results show the combination of optimization algorithm is feasible at the optimal design of hydrofoil sections. What’s more, a comparison between two different optimization algorithms is made, a conclusion that the simulated annealing algorithm is better then the genetic algorithm is obtained.


2012 ◽  
Vol 490-495 ◽  
pp. 267-271 ◽  
Author(s):  
Shu Fei Li

An effective hybrid Simulated Annealing Algorithm based on Genetic Algorithm is proposed to apply to reservoir operation. Compared with other optimal methods, it is proved that SA-GA algorithm is a quite effective optimization method to solve reservoir operation problem. The simulated annealing algorithm is introduced to Genetic Algorithm, which is feasibility and validity. As a result of stronger ability of global search and better convergence property of SA-GA, and compared with other algorithms, the approximate global optimal solution would be obtained in little time. The operation speed is more quickness and the results are more stabilization by SA-GA, than Genetic Algorithm and the traditional Dynamic Programming and POA.


Author(s):  
Ha Thi Mai Phan

As the construction activity has been growing, the companies that supply fresh concrete expand their production scale to meet their customers’ needs. The more customers, the longer queue tank trucks have to wait to pick up the fresh concrete. The customers are construction companies that have different construction works at the same time while the transportation time is only at night. They have to schedule efficiently the fleet of fresh concrete tank trucks during the night (turning the tank trucks a few turns) with constraints on the time window for the transfer of fresh concrete from the concrete company to the construction site as well as constraints on the waiting time for loading fresh concrete in the company. The scheduling for the fleet of construction company’s tank trucks will be modeled to minimize total transportation costs (fixed, variable) with estimated waiting times and tank truck’s turns several times during the night. The model of logistics problem is NP hard; Therefore, two algorithms are proposed to find the nearly optimal solution: heuristics and simulated annealing algorithm. The results will be compared and analyzed.


2014 ◽  
Vol 1016 ◽  
pp. 256-260
Author(s):  
Ze Yin He ◽  
Teng Jiao Lin ◽  
Wen Liu ◽  
Bo Liu

The Response Surface Method (RSM) and Simulated Annealing Algorithm (SAA) are utilized to analysis and optimize the vibro-acoustic properties of gear system. A simple case is illustrated to demonstrate the capabilities of the acoustic optimization design method. The results show that the method of acoustic optimization design based on RSM and SAA can effectively reduce radiation noise, and provide theoretical fundament and guidance for further study on acoustic optimization design of complicated gear system.


2020 ◽  
Vol 20 (03) ◽  
pp. 2050031
Author(s):  
Qiang Han ◽  
Xuan Zhang ◽  
Kun Xu ◽  
Xiuli Du

The optimum design of distributed tuned mass dampers (DTMDs) is normally based on predefined restrictions, such as the location and/or mass ratio of the tuned mass dampers (TMDs). To further improve the control performance, a free parameter optimization method (FPOM) is proposed. This method only restricts the total mass of the DTMDs system and takes the installation position, mass ratio, stiffness and damping of each TMD as parameters to be optimized. An improved hybrid genetic-simulated annealing algorithm (IHGSA) is adopted to find the optimum values of the design parameters. This algorithm can solve the non-convexity and multimodality problems of the objective function and is quite effective in dealing with the large amount of computations in the free parameter optimization. A numerical benchmark model is adopted to compare the control efficiency of FPOM with conventional control scenarios, such as single TMD, multiple TMDs and DTMDs optimized through conventional methods. The results show that the DTMDs system optimized by using FPOM is superior to the other control scenarios for the same value of mass ratio.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
He Tian ◽  
Guoqiang Wang ◽  
Kangkang Sun ◽  
Zeren Chen ◽  
Chuliang Yan ◽  
...  

Dynamic unbalance force is an important factor affecting the service life of scrap metal shredders (SMSs) as the product of mass error. Due to the complexity of hammerheads arrangement, it is difficult to take all the parts of the hammerhead into account in the traditional methods. A novel optimization algorithm combining genetic algorithm and simulated annealing algorithm is proposed to improve the dynamic balance of scrap metal shredders. The optimization of hammerheads and fenders on SMS in this paper is considered as a multiple traveling salesman problem (MTSP), which is a kind of NP-hard problem. To solve this problem, an improved genetic algorithm (IGA) combined with the global optimization characteristics of genetic algorithm (GA) and the local optimal solution of simulated annealing algorithm (SA) is proposed in this paper, which adopts SA in the process of selecting subpopulations. The optimization results show that the resultant force of the shredder central shaft by using IGA is less than the traditional metaheuristic algorithm, which greatly improves the dynamic balance of the SMS. Validated via ADAMS simulation, the results are in good agreement with the theoretical optimization analysis.


2014 ◽  
Vol 34 (2) ◽  
pp. 0214002
Author(s):  
刘涛 Liu Tao ◽  
周申蕾 Zhou Shenlei ◽  
张攀政 Zhang Panzheng ◽  
王利 Wang Li ◽  
张军勇 Zhang Junyong

Sign in / Sign up

Export Citation Format

Share Document