A fault-tolerant control scheme within adaptive disturbance observer for hypersonic vehicle

Author(s):  
Jun Zhou ◽  
Jing Chang ◽  
Zongyi Guo

The paper describes the design of a fault-tolerant control scheme for an uncertain model of a hypersonic reentry vehicle subject to actuator faults. In order to improve superior transient performances for state tracking, the proposed method relies on a back-stepping sliding mode controller combined with an adaptive disturbance observer and a reference vector generator. This structure allows for a faster response and reduces the overshoots compared to linear conventional disturbance observers based sliding mode controller. Robust stability and performance guarantees of the overall closed-loop system are obtained using Lyapunov theory. Finally, numerical simulations results illustrate the effectiveness of the proposed technique.

Author(s):  
Majied Mokhtari ◽  
Mostafa Taghizadeh ◽  
Pegah Ghaf Ghanbari

In this paper, an active fault-tolerant control scheme is proposed for a lower limb exoskeleton, based on hybrid backstepping nonsingular fast terminal integral type sliding mode control and impedance control. To increase the robustness of the sliding mode controller and to eliminate the chattering, a nonsingular fast terminal integral type sliding surface is used, which ensures finite time convergence and high tracking accuracy. The backstepping term of this controller guarantees global stability based on Lyapunov stability criterion, and the impedance control reduces the interaction forces between the user and the robot. This controller employs a third order super twisting sliding mode observer for detecting, isolating ad estimating sensor and actuator faults. Motion stability based on zero moment point criterion is achieved by trajectory planning of waist joint. Furthermore, the highest level of stability, minimum error in tracking the desired joint trajectories, minimum interaction force between the user and the robot, and maximum system capability to handle the effect of faults are realized by optimizing the parameters of the desired trajectories, the controller and the observer, using harmony search algorithm. Simulation results for the proposed controller are compared with the results obtained from adaptive nonsingular fast terminal integral type sliding mode control, as well as conventional sliding mode control, which confirm the outperformance of the proposed control scheme.


2012 ◽  
Vol 503-504 ◽  
pp. 1647-1650
Author(s):  
Sheng Qi Sun ◽  
Xue Bin Li

In this paper, an adaptive sliding model design method is proposed to deal with the asymptotic stabilization problem for a class of fault-tolerant control systems with sensor failures and state time-delays. The considered faults on sensors are assumed to be unknown but depended on the system states without breaching the practical case, while the effects of time delays are also related to the states. For the sake of eliminating the effects of sensor faults and delays, an adaptive sliding mode controller is developed by using the fault signals transmitted by sensors with adjusting some adaptive estimations. Then the asymptotic stability results are ensured by using the proposed static output feedback controller via Lyapunov stability theory. The proposed design technique is finally evaluated in the light of a simulation example.


2019 ◽  
Vol 9 (19) ◽  
pp. 4010 ◽  
Author(s):  
Ngoc Phi Nguyen ◽  
Sung Kyung Hong

Fault-tolerant control is becoming an interesting topic because of its reliability and safety. This paper reports an active fault-tolerant control method for a quadcopter unmanned aerial vehicle (UAV) to handle actuator faults, disturbances, and input constraints. A robust fault diagnosis based on the H ∞ scheme was designed to estimate the magnitude of a time-varying fault in the presence of disturbances with unknown upper bounds. Once the fault estimation was complete, a fault-tolerant control scheme was proposed for the attitude system, using adaptive sliding mode backstepping control to accommodate the actuator faults, despite actuator saturation limitation and disturbances. The Lyapunov theory was applied to prove the robustness and stability of the closed-loop system under faulty operation. Simulation results show the effectiveness of the fault diagnosis scheme and proposed controller for handling actuator faults.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Xing Fang ◽  
Fei Liu

A novel full-order terminal sliding-mode controller (FOTSMC) based on the finite-time disturbance observer (FTDO) is proposed for the “JIAOLONG” manned submersible with lumped disturbances. First, a finite-time disturbance observer (FTDO) is developed to estimate the lumped disturbances including the external disturbances and model uncertainties. Second, a full-order terminal sliding-mode surface is designed for the manned submersible, whose sliding-mode motion behaves as full-order dynamics rather than reduced-order dynamics in conventional sliding-mode control systems. Then, a continuous sliding-mode control law is developed to avoid chattering phenomenon, as well as to drive the system outputs to the desired reference trajectory in finite time. Furthermore, the closed-loop system stability analysis is given by Lyapunov theory. Finally, the simulation results demonstrate the satisfactory tracking performance and excellent disturbance rejection capability of the proposed finite-time disturbance observer based full-order terminal sliding-mode control (FTDO-FOTSMC) method.


2012 ◽  
Vol 57 (7) ◽  
pp. 1783-1789 ◽  
Author(s):  
Mirza Tariq Hamayun ◽  
Christopher Edwards ◽  
Halim Alwi

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Davood Allahverdy ◽  
Ahmad Fakharian ◽  
Mohammad Bagher Menhaj

In this paper, a fault-tolerant control system based on back-stepping integral sliding mode controller (BISMC) is designed and analyzed for both nonlinear translational and rotational subsystems of the quadrotor unmanned aerial vehicles (UAVs). The novelty of this paper is about combination of a classic controller with a repetitive algorithm to reduce the response time to actuator faults and have better tracking performance. The actuator fault is defined based on the loss of effectiveness and bias fault. Next, the iterative learning control algorithm (ILCA) is used to compensate for the unknown fault input according to previous recorded experiences. In the normal condition (without actuators fault), BISMC can force the actual trajectories toward the desired commands and reduce chattering about control signals, and in the presence of the actuators fault or external disturbances, the mentioned learning algorithm can incline the accuracy of the tracking performance and compensate for the occurred error. The Lyapunov theory illustrates that the proposed control strategy can stabilize the system despite the actuators’ fault and external disturbances. The simulation results show the effectiveness of the proposed scheme in comparison with another method.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Farong Kou ◽  
Jianghao Wu ◽  
Jian Gao ◽  
Dapeng Wu ◽  
Ruochen Chen

In order to improve the ride comfort and handling stability of the vehicle and realize the recovery of vibration energy, an electromagnetic linear hybrid suspension actuator composed of linear motor and solenoid valve shock absorber is proposed. At the same time, a fault diagnosis and fault-tolerant control strategy is designed to solve the system instability caused by the fault of electromagnetic hybrid active suspension. The 1/4 vehicle two-degree-of freedom suspension model, the linear motor mathematical model, and the solenoid valve shock absorber test model are established. In this paper, the fuzzy sliding mode controller is used as the controller and the unknown input observer is used to estimate the state of the suspension. According to the residual obtained from the unknown input observer and compared with the residual threshold, the suspension fault is determined. In the case of fault, the fuzzy sliding mode controller is used to compensate the force and realize the suspension fault-tolerant control. The performance of the suspension is simulated on random road and bumped road, respectively. The simulation results show that the fault-tolerant control effect of the three performance indexes of the suspension is good, and the ride comfort and safety of the suspension are improved. Finally, the bench test is carried out, and the test results show that in the fault-tolerant control state, the root mean square value of the sprung mass acceleration is reduced by 31.69% compared with the fault state and the dynamic performance of the suspension is improved.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hao Sheng ◽  
Xia Liu

This paper studies the problems of external disturbance and various actuator faults in a nonlinear robotic system. A composite compensation control scheme consisting of adaptive sliding mode controller and observer-based fault-tolerant controller is proposed. First, a sliding mode controller is designed to suppress the external disturbance, and an adaptive law is employed to estimate the bound of the disturbance. Next, a nonlinear observer is designed to estimate the actuator faults, and a fault-tolerant controller is obtained based on the observer. Finally, the composite compensation control scheme is obtained to simultaneously compensate the external disturbance and various actuator faults. It is proved by Lyapunov function that the disturbance compensation error and fault compensation error can converge to zero in finite time. The theoretical results are verified by simulations. Compared to the conventional fault reconstruction scheme, the proposed control scheme can compensate the disturbance while dealing with various actuator faults. The fault compensation accuracy is higher, and the fault error convergence rate is faster. Moreover, the robot can track the desired position trajectory more accurately and quickly.


Author(s):  
Yang Gao ◽  
Yifei Wu ◽  
Xiang Wang ◽  
Qingwei Chen

In four-motor servo systems, actuator failures influence control performance seriously through huge inertia ratio changes and unknown disturbances. To solve this problem, an adaptive fault-tolerant control scheme based on characteristic modeling and extended state observer is proposed. First, an adaptive sliding mode observer is designed as fault detection part and offers motor information for controller. Second, to simplify complex dynamic model, this servo system is described by a second-order difference equation. This model integrates uncertainties into three time–varying characteristic parameters to reflect system status. Third, a discrete-time extended state observer is applied to restrain system error caused by actuator failure. Then, a fault-tolerant controller is designed based on characteristic model, and its stability is guaranteed in the sense of Lyapunov stability theorem. These four parts make up the adaptive control scheme and its effectiveness in system control, and fault tolerant is evaluated by both simulation and experiment results.


Sign in / Sign up

Export Citation Format

Share Document