Dispersive Liquid-Liquid Microextraction Coupled with Gas Chromatography for the Determination of Orthochlorophenol in Environmental Water Samples

2012 ◽  
Vol 518-523 ◽  
pp. 1379-1382
Author(s):  
Ying Chun Yang ◽  
Qian Sun ◽  
Chong Shu Yi ◽  
Zhi Xiang Ye ◽  
Li Mo

A rapid and effective method, the dispersive liquid-liquid microextraction(DLLME) with gas chromatography, has been developed for the extraction and determination of OCP in environmental water samples. The factors relevant to the efficiency of DLLME were investigated and optimized. Under the optimum conditions, such as 150μL of dichloromethane as extraction solvent, 1.2 mL acetone as dispersive agent, 8 minutes extraction time, and without salt addition, the linear response of this method was in the range of 0.5~5000μg L−1 (r = 0.9981), the relative standard deviation (RSD) for 500μg L−1 and 1000μg L−1 of OCP was 5.2% and 12.6% (n = 6), respectively. The detection limit (3σ) was 0.08 μg L−1. The developed method was successfully applied to the determination of trace amount of OCP in three kinds of real environmental water samples, the spiked recoveries were in the range of 87.4%~108.0%.

2013 ◽  
Vol 11 (3) ◽  
pp. 394-403 ◽  
Author(s):  
Yanling Ma ◽  
Yingying Wen ◽  
Jinhua Li ◽  
Hua Wang ◽  
Yangjun Ding ◽  
...  

AbstractAbstract An efficient method based on dispersive liquid-liquid microextraction coupled with micellar electrokinetic chromatography has been developed for determination of three phenoxyacid herbicides (PAs) of 2,4-dichlorophenoxybutyric acid (2,4-DB), dicamba and 2,4-dichlorophenoxyacetic acid (2,4-D), in environmental water samples. The types and volumes of extracting and dispersing solvents, ionic strength, extraction and centrifugation time and centrifugation speed were investigated. Successful separation of the three PAs was achieved within 7 min, by using the background electrolyte solution consisting of 10 mmol L−1 sodium tetraborate, 25 mmol L−1 sodium dodecyl sulfate and 15% (v/v) methanol, at pH 9.75. Excellent analytical performances were attained, such as good linear relationships (R ≥0.9993) between peak area and concentration for each PAs from 10–1000 ng mL−1, limits of detection of 1.56–1.91 ng mL−1, and intra-day precisions at two spiked levels in terms of migration time and peak area within the range of 0.22–0.42% and 3.88–6.39%, respectively. Enrichment factors of 2,4-DB, dicamba and 2,4-D were 180, 151 and 216, respectively. The method recoveries obtained at fortified 20.0, 50.0 and 100.0 ng mL−1 for lake, river and reservoir water samples varied from 67.91 to 119.07% with the relative standard deviation of 1.47–6.89%. Graphical abstract


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Mostafa Bashiri Juybari ◽  
Ali Mehdinia ◽  
Ali Jabbari ◽  
Yadollah Yamini

In this study dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) followed by gas chromatography-electron capture detection (GC-ECD) was developed for determination of some pesticides in the water samples. Some important parameters, such as type and volumes of extraction and disperser solvent and salt effect on the extraction recovery of analytes from aqueous solution were investigated. Under the optimum conditions (extraction solvent: 1-undecanol, 15.0 μL; disperser solvent: acetone, 1.0 mL, and without salt addition), the preconcentration factors were obtained ranged from 802 to 915 for analytes. The linear ranges were from 0.05 to 100 μg L−1, and detection limits ranged from 0.05 to 0.008 μg L−1. The relative standard deviations (RSDs%, ) were between 3.2% and 6.7%. The proposed method was successfully applied to the determination of target analytes in the tap, sea, and river water samples, and satisfactory recoveries were obtained.


2014 ◽  
Vol 35 (17) ◽  
pp. 2479-2487 ◽  
Author(s):  
Bárbara Socas-Rodríguez ◽  
Javier Hernández-Borges ◽  
María Asensio-Ramos ◽  
Antonio V. Herrera-Herrera ◽  
Jose A. Palenzuela ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document