Investigation of Ionic Conduction and Morphological Properties of PMMA-Based Polymer Electrolytes Containing Lithium Iodide

2012 ◽  
Vol 545 ◽  
pp. 264-268
Author(s):  
Nurul Rozullyah Zulkepely ◽  
Siti Rohana Majid ◽  
Zurina Osman

In this study, the two systems of polymethylmethacrylate (PMMA) based polymer electrolyte films have been prepared by the solution casting technique. Lithium iodide (LiI) and ethylene carbonate (EC) were used as inorganic salt and plasticizer, respectively. The highest room temperature conductivity for the plasticized system and unplasticized system is 4.42 x 10-5Scm-1and 4.37 x 10-6Scm-1, respectively. The conductivity-temperature dependence studies have been performed on these films in the temperature range of 303 K to 373 K. It can be observed that the logσversus 1000/T plots obey the Arrhenius rule and VTF rule for the plasticized film and unplasticized film, respectively [1-3]. The surface morphology of the plasticized and unplasticized films was observed by using scanning electron microscope (SEM).

2015 ◽  
Vol 719-720 ◽  
pp. 82-86 ◽  
Author(s):  
N.L.M. Zazuli ◽  
A.S.A. Khiar

Polymer electrolytes blends of methylcellulose (MC)/chitosan-ammonium triflate (NH4CF3SO3) plasticized with Ethylene Carbonate (EC) were prepared by solution-casting technique. The effect on electrical property was investigated by impedance spectroscopy. Sample with 45 wt% of EC exhibit the highest room temperature conductivity of 2.16 × 10-4 Scm-1. Dielectric data were analyzed for the sample with the highest conductivity.


2013 ◽  
Vol 594-595 ◽  
pp. 818-822 ◽  
Author(s):  
K.Z. Hamdan ◽  
A.S.A. Khiar

Films of methyl cellulose (MC) /chitosan blends were prepared via solution casting technique and their properties with different amount of ammonium trilate, NH4CF3SO3 were compared. Measurements of conductivity as a function of frequency at room temperature on these films were carried out using HIOKI 3532-50 LCR Hi-Tester where the frequency was set between 50 Hz to 1 MHz. Samples having 40 wt% of NH4CF3SO3 exhibit the highest room temperature conductivity of (4.99±4.18) x 10-6 Scm-1. Dielectric data were analyzed using complex permittivity and complex electrical modulus for the sample with the highest ionic conductivity.


2014 ◽  
Vol 1024 ◽  
pp. 335-338
Author(s):  
Woon Gie Chong ◽  
Khairul Bahiyah Md Isa ◽  
Lisani Othman ◽  
Nurul Husna Zainol ◽  
Siti Mariam Samin ◽  
...  

Polyacrylonitrile (PAN) based polymer electrolytes composed of PAN, lithium tetrafluoroborate (LiBF4), ethylene carbonate (EC) and dimethyl phthalate (DMP) were prepared by solution casting technique. The variation of conductivity with LiBF4 concentrations of the prepared films has been studied using AC impedance spectroscopy. The conductivity of the films is charge concentration dependent and the highest room temperature conductivity of 1.08 ×10-2 S cm-1 is achieved for the film with optimum composition. The thermal activated conductivity of the films obeys Arrhenius rule in the temperature range from 303 K to 353 K. The electrochemical stability of the PAN-based films has been investigated using linear sweep voltammetry (LSV) with three electrodes system. The films were found to be electrochemically stable up to 4.4 V. The reversibility of the lithium ions conduction in the polymer electrolyte films have been studied using cyclic voltammetry (CV).


2013 ◽  
Vol 594-595 ◽  
pp. 786-792 ◽  
Author(s):  
Khairul Bahiyah Md Isa ◽  
Lisani Othman ◽  
Nurul Husna Zainol ◽  
Siti Mariam Samin ◽  
Woon Gie Chong ◽  
...  

Sodium ion conducting gel polymer electrolyte (GPE) films consisting of polyvinylidenefluoride-co-hexafluoropropylene (PVdF-HFP) as a polymer host were prepared using the solution casting technique. Sodium trifluoromethane-sulfonate (NaCF3SO3) was used as an ionic salt and the mixture of ethylene carbonate (EC) and propylene carbonate (PC) as the solvent plasticizer. The GPE films were found to be stable up to temperature of 145 °C as shown by TGA analysis. The AC impedance study show that the optimum conductivity of 2.50 x 10-3 S cm-1 at room temperature is achieved for the film containing 20 wt.% of NaCF3SO3 salt. The temperature dependence of conductivity obeys VTF relation in the temperature range of 303 K to 373 K.


2013 ◽  
Vol 856 ◽  
pp. 118-122 ◽  
Author(s):  
A.S. Samsudin ◽  
M.I.N. Isa

Solid biopolymer electrolytes (SBE) comprising carboxymethyl cellulose (CMC) with NH4Br-EC were prepared by solution casting method. The samples were characterized by impedance spectroscopy (EIS) and sample containing 25wt. % of NH4Br exhibited the highest room temperature conductivity of 1.12 x 10-4S/cm for salted CMC based SBE system. The ionic conductivity increased to 3.31 x 10-3S/cm when 8 wt. % of ethylene carbonate (EC) was added to the highest conductivity. The conductivity-temperature of plasticized SBE system obeys the Arrhenius relation where the ionic conductivity increases with temperature. The influence of EC addition on unplasticized CMC based SBE was found to be dependent on the number and the mobility of the ions. This results revealed that the influence of plasticizer (EC) which was confirmed play the significant role in enhancement of ionic conductivity for SBE system.


2013 ◽  
Vol 686 ◽  
pp. 137-144 ◽  
Author(s):  
N.H. Zainol ◽  
Zurina Osman ◽  
Lisani Othman ◽  
K.B. Md. Isa

Magnesium-ion conducting gel polymer electrolytes (GPEs) based on PMMA with ethylene carbonate (EC) and propylene carbonate (PC) as a plasticizing solvent were prepared via the solution casting technique. Mg(CF3SO3)2 salt was used as source of magnesium ions, Mg2+. The variation of conductivity with salt concentrations, from 5 wt.% to 30 wt.% was studied. The gel polymer electrolyte with composition 20 wt.% of Mg(CF3SO3)2 exhibited the highest conductivity of 1.27 x 10-3 S cm-1 at room temperature. The conductivity-temperature dependence of gel polymer electrolyte films obeys Arrhenius behaviour with activation energy in the range of 0.18 eV to 0.26 eV. Ionic transport number was evaluated using DC polarization technique and it reveals the conducting species are predominantly ions. It is found that the ionic conductivity and transport properties of the prepared GPEs are consistent with the X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) studies.


2015 ◽  
Vol 1108 ◽  
pp. 27-32 ◽  
Author(s):  
A.S. Samsudin ◽  
M.I.N. Isa

This study deals with the ionic conduction mechanism of carboxymethyl cellulose (CMC) – NH4Br biopolymer electrolytes (BPEs) plasticized with ethylene carbonate (EC) prepared via solution-casting technique. The ionic conductivity of BPEs system was characterized by using impedance spectroscopy and shows the highest conductivity at ambient temperature for CMC–NH4Br BPEs is 1.12 x 10-4 S/cm and enhanced to 3.31 x 10-3 S/cm with the addition of 8 wt. % EC. The conductivity–temperature plot of the BPEs system obeys Arrhenius law where R2~1. The dielectric values were found to increase with increasing temperature thus divulged that the BPEs system to be non-Debye type. The temperature dependence of the power law exponent shows the CMC–NH4Br–EC BPEs system follows the quantum mechanical tunneling (QMT) model of conduction mechanism, where the enhanced protonation of NH4Br with addition of EC makes the charge transfer (polarons) able to tunnel through the potential barrier that exists between the lone pair electrons in carboxyl group of CMC and NH4Br.


2013 ◽  
Vol 802 ◽  
pp. 194-198 ◽  
Author(s):  
M.I.N. Isa ◽  
A. S. Samsudin

The present work deals with the findings on the ionic conduction behavior based on ethylene carbonate (EC) as plasticizer in carboxymethyl cellulose (CMC) – dodecyltrimethyl ammonium bromide (DTAB) for green polymer electrolytes (GPEs) that were prepared via solution casting technique. The highest ionic conductivity obtained for CMC-DTAB film was 7.72 x 10-4 S/cm and enhanced to 2.37 x 10-3 S/cm with addition 10wt. % of EC. The conductivity-temperature of GPEs system obeys the Arrhenius relation where the ionic conductivity increases with temperature. The temperature dependence of the power law exponent for plasticized CMC-DTAB based GPEs system follows the quantum mechanical tunneling (QMT) model for conduction mechanism.


2012 ◽  
Vol 545 ◽  
pp. 312-316 ◽  
Author(s):  
Siti Khatijah Deraman ◽  
Ri Hanum Yahaya Subban ◽  
Mohamed Nor Sabirin

Poly(vinyl) chloride (PVC)-NH4I-EC films have been prepared by solution cast technique. The sample containing 30 wt. % NH4I exhibited highest room temperature conductivity of 4.60 × 10-7S cm-1. The conductivity increased to 1.08 × 10-6Scm-1when 15 wt. % of ethylene carbonate (EC) was added to 70 wt. % PVC - 30 wt. % NH4I. Fourier Transform Infrared (FTIR) showed evidence of polymer–salt complexation while DSC showed increase in glass transition temperature (Tg) of PVC -NH4I - EC polymer electrolytes. The conductivity behavior of the studied system could be accounted by the changes in Tgvalues.


2013 ◽  
Vol 594-595 ◽  
pp. 604-607
Author(s):  
Siti Rudhziah ◽  
N.S. Mohamed

In this study, Poly (vinylidene fluoride-co-hexafluoropropylene)/Poly (ethyl methacrylate (PEMA) nanocomposite polymer electrolytes was prepared by solution casting technique. The effects of TiO2 nanofiller on the structural, thermal and conductivity characteristics were examined using x-ray diffraction, scanning electron microscopy, differential scanning calorimetry and impedance spectroscopy. The crystallinity and conductivity of the salted system are found to increase with the addition of TiO2. The system containing 5 wt % of TiO2 exhibited the highest room temperature conductivity of 1.32 × 10-3 S cm-1.


Sign in / Sign up

Export Citation Format

Share Document