lone pair electrons
Recently Published Documents


TOTAL DOCUMENTS

203
(FIVE YEARS 49)

H-INDEX

30
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Hosoowi Lee ◽  
Jun Ho Hwang ◽  
Dajung Lee ◽  
Inhye Kim ◽  
Eunji Lee ◽  
...  

Abstract Reversible supramolecular polymerisation and depolymerisation of biomacromolecules are common and fundamental phenomena in biological systems, which can be controlled by the selective modification of biomacromolecules through molecular recognition. Herein, a porphyrin tripod (DPZnT) connected through a triazole bridge was prepared as a monomeric building block for guest-induced supramolecular polymerisation. Although the lone pair electrons in triazolic nitrogen potentially bind to the zinc porphyrin units through axial ligation, the intrinsic steric hindrance suppressed the coordination of the triazole bridge to the porphyrin unit in DPZnT. Therefore, DPZnT formed spherical nanoparticles through π-π interactions. The addition of 1,3,5-tris(pyridine-4-yl)benzene (Py3B) caused the guest-induced fibrous supramolecular polymerisation of DPZnT by forming a 1:1 host-guest complex, which was further assembled into a fibrous polymer. Furthermore, addition of Cl− to DPZnT induced the transformation of spherical nanoparticles to fibrous supramolecular polymers. The fibrous supramolecular polymers of DPZnT obtained by adding Py3B or Cl− were depolymerised to their original spherical particles after adding Cu(ClO4)2 or AgNO3, respectively.


Nanoscale ◽  
2022 ◽  
Author(s):  
Zhikai Shi ◽  
Zebin Yu ◽  
Juan Guo ◽  
Ronghua Jiang ◽  
Yanping Hou ◽  
...  

Lattice distortion is an important way to improve the electrocatalytic performance and stability of two-dimensional transition metal materials (2d-TMSs). Herein, a lattice distortion nickel-molybdenum sulfide electrocatalyst on foam nickel (NiMoS4-12/NF)...


Author(s):  
Andrew P. Purdy ◽  
Ray J. Butcher ◽  
Christopher A. Klug

In the structures of 1:1 and 1:2 adducts of phosphanetricarbonitrile (C3N3P) with 1,4-diazabicyclo[2.2.2]octane (C6H12N2), the 1:1 adduct crystallizes in the orthorhombic space group, Pbcm, with four formula units in the unit cell (Z′ = 0.5). The P(CN)3 unit lies on a crystallographic mirror plane while the C6H12N2 unit lies on a crystallographic twofold axis passing through one of the C—C bonds. The P(CN)3 moiety has close to C 3v symmetry and is stabilized by forming adducts with two symmetry-related C6H12N2 units. The phosphorus atom is in a five-coordinate environment. As a result of the symmetry, the two trans angles are equal so τ5 = 0.00 and thus the geometrical description could be considered to be square pyramidal. However, the electronic geometry is distorted octahedral with the lone pair on the phosphorous occupying the sixth position. As would be expected from VSEPR considerations, the repulsion of the lone-pair electrons with the equatorial bonding electrons means that the trans angles for the latter are considerably reduced from 180° to 162.01 (4)°, so the best description of the overall geometry for phosphorus is distorted square pyramidal. The 1:2 adduct crystallizes in the monoclinic space group, P21/m with two formula units in the asymmetric unit (i.e. Z' = 1/2). The P(CN)3 moiety lies on a mirror plane and one of the two C6H12N2 (dabco) molecules also lies on a mirror plane. The symmetry of the P(CN)3 unit is close to C 3v. There are three P...N interactions and consequently the molecular geometry of the phosphorus atom is distorted octahedral. This must mean that the lone pair of electrons on the phosphorus atom is not sterically active. For the 1:1 adduct, there are weak associations between the phosphorus atom and one of the terminal nitrogen atoms from the C[triple-bond] N moiety, forming chains in the a-axis direction. In addition there are weak C—H...N interactions between a terminal nitrogen atoms from the C[triple-bond]N moiety and the C6H12N2 molecules, which form sheets perpendicular to the a axis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jin Zhao ◽  
Wen-Xiong Song ◽  
Tianjiao Xin ◽  
Zhitang Song

AbstractWhile alloy design has practically shown an efficient strategy to mediate two seemingly conflicted performances of writing speed and data retention in phase-change memory, the detailed kinetic pathway of alloy-tuned crystallization is still unclear. Here, we propose hierarchical melt and coordinate bond strategies to solve them, where the former stabilizes a medium-range crystal-like region and the latter provides a rule to stabilize amorphous. The Er0.52Sb2Te3 compound we designed achieves writing speed of 3.2 ns and ten-year data retention of 161 °C. We provide a direct atomic-level evidence that two neighbor Er atoms stabilize a medium-range crystal-like region, acting as a precursor to accelerate crystallization; meanwhile, the stabilized amorphous originates from the formation of coordinate bonds by sharing lone-pair electrons of chalcogenide atoms with the empty 5d orbitals of Er atoms. The two rules pave the way for the development of storage-class memory with comprehensive performance to achieve next technological node.


Author(s):  
Dhanya Sunil ◽  
Preethi Kumari ◽  
Prakash Shetty ◽  
Suma A Rao

AbstractThe present work highlights the corrosion inhibition action of two indole-3-hydrazides with varying alkyl chain lengths: 2-(1H-indol-3-yl)acetohydrazide (IAH) and 4-(1H-indol-3-yl)butanehydrazide (IBH) against mild steel (MS) in 0.5 M hydrochloric acid (HCl) solution using electrochemical and gravimetric measurement methods. Both IAH and IBH behaved as mixed-type inhibitors, and their anticorrosion behaviour was due to a protective film formation on MS surface through physisorption, in agreement with Langmuir’s adsorption model. The surface morphologies of the inhibited specimens examined using SEM and AFM images showed distinctive improvement against acid corrosion. The quantum mechanical calculations indicated the contribution of delocalized π-electrons in the indole unit and the lone-pair electrons in the carbonyl group for improved adsorption of the studied hydrazides onto the metal surface, supporting the experimental results. IAH and IBH showed maximum inhibition efficiency of 80.4 and 94.1% at 30 °C in MS exposed to 0.5 M HCl medium at its optimum concentration. The better resistance to MS corrosion was exhibited by the acid system-containing IBH bearing three methylene groups and hence having higher molar volume and surface coverage in comparison with IAH that incorporated only one methylene group in its chemical structure.


2021 ◽  
Vol 24 ◽  
pp. 101122
Author(s):  
Kwangsik Jeong ◽  
Hyangsook Lee ◽  
Changwoo Lee ◽  
Lim Hyeon Wook ◽  
Hyoungsub Kim ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xuanru Deng ◽  
Hongxing Liu ◽  
Yuan Xu ◽  
Leung Chan ◽  
Jun Xie ◽  
...  

Abstract Background The design of stable and biocompatible black phosphorus-based theranostic agents with high photothermal conversion efficiency and clear mechanism to realize MRI-guided precision photothermal therapy (PTT) is imminent. Results Herein, black phosphorus nanosheets (BPs) covalently with mono-dispersed and superparamagnetic ferrous selenide (FeSe2) to construct heteronanostructure nanoparticles modified with methoxy poly (Ethylene Glycol) (mPEG-NH2) to obtain good water solubility for MRI-guided photothermal tumor therapy is successfully designed. The mechanism reveals that the enhanced photothermal conversion achieved by BPs-FeSe2-PEG heteronanostructure is attributed to the effective separation of photoinduced carriers. Besides, through the formation of the P-Se bond, the oxidation degree of FeSe2 is weakened. The lone pair electrons on the surface of BPs are occupied, which reduces the exposure of lone pair electrons in air, leading to excellent stability of BPs-FeSe2-PEG. Furthermore, the BPs-FeSe2-PEG heteronanostructure could realize enhanced T2-weighted imaging due to the aggregation of FeSe2 on BPs and the formation of hydrogen bonds, thus providing accurate PTT guidance and generating hyperthermia to inhabit tumor growth under NIR laser with negligible toxicity in vivo. Conclusions Collectively, this work offers an opportunity for fabricating BPs-based heteronanostructure nanomaterials that could simultaneously enhance photothermal conversion efficiency and photostability to realize MRI-guided cancer therapy. Graphic abstract


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 766
Author(s):  
Chongyang Li ◽  
Yongli Huang ◽  
Chang Q Sun ◽  
Lei Zhang

Recently, we discovered that the delocalization of nitrogen lone-pair electrons (NLPEs) in five-membered nitrogen heterocycles created a second σ-aromaticity in addition to the prototypical π-aromaticity. Such dual-aromatic compounds, such as the pentazole anion, were proved to have distinct chemistry in comparison to traditional π-aromatics, such as benzene, and were surprisingly unstable, susceptible to electrophilic attack, and relatively difficult to obtain. The dual-aromatics are basic in nature, but prefer not to be protonated when confronting more than three hydronium/ammonium ions, which violates common sense understanding of acid−base neutralization for a reason that is unclear. Here, we carried out 63 test simulations to explore the stability and reactivity of three basic heterocycle anions (pentazole anion N5¯, tetrazole anion N4C1H1¯, and 1,2,4-triazole anion N3C2H2¯) in four types of solvents (acidic ions, H3O+ and NH4+, polar organics, THF, and neutral organics, benzene) with different acidities and concentrations. By quantum mechanical calculations of the electron density, atomistic structure, interatomic interactions, molecular orbital, magnetic shielding, and energetics, we confirmed the presence of dual aromaticity in the heterocyclic anions, and discovered their reactivity to be a competition between their basicity and dual aromaticity. Interestingly, when the acidic ions H3O+/NH4+ are three times more in number than the basic heterocyclic anions, the anions turn to violate acid−base neutralization and remain unprotonated, and the surrounding acidic ions start to show a significant stabilization effect on the studied heterocyclic anions. This work brings new knowledge to nitrogen aromatics and the finding is expected to be adaptable for other pnictogen five-membered ring systems.


2021 ◽  
Vol 9 ◽  
Author(s):  
Panpan Li ◽  
Bo Wang ◽  
Li Ji ◽  
Hongxuan Li ◽  
Lei Chen ◽  
...  

This study investigated the friction behavior of graphene in air and nitrogen atmosphere environments. The microstructural evolution caused by the variation of atmosphere environments and its effect on the friction coefficient of the graphene is explored. It is demonstrated that graphene can exhibit excellent lubricating properties both in air and nitrogen atmosphere environments. In air, a highly ordered layer-by-layer slip structure can be formed at the sliding interface. Oxygen and H2O molecules can make edge dangling bonds and defects passive. Thus the interaction between the nanosheets and the layers of nanosheets is weak and the friction coefficient is low (0.06–0.07). While the friction coefficient increases to 0.14–0.15 in a nitrogen atmosphere due to the interaction of defects generated in the sliding process, the nitrogen molecules with lone pair electrons can only make the nanosheets passive to a certain degree, thus the ordered slip structure is destroyed and friction is higher. This work reveals the influence of environmental molecules on the macroscale tribological performances of graphene and its effect on the microstructure at the sliding interface, which could shed light on the lubricating performance of graphene in environmental atmospheres and help us to understand the tribological behaviors of graphite at the macroscale.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Samuel Tetteh ◽  
Albert Ofori

Abstract The M–Ccarbene bond in metal (M) complexes involving the imidazol-2-ylidene (Im) ligand has largely been described using the σ-donor only model with donation of σ electrons from the sp-hybridized orbital of the carbene carbon into vacant orbitals on the metal centre. Analyses of the M–Ccarbene bond in a series of group IA, IIA and IIIA main group metal complexes show that the M-Im interactions are mostly electrostatic with the M–Ccarbene bond distances greater than the sum of the respective covalent radii. Estimation of the binding energies of a series of metal hydride/fluoride/chloride imidazol-2-ylidene complexes revealed that the stability of the M–Ccarbene bond in these complexes is not always commensurate with the σ-only electrostatic model. Further natural bond orbital (NBO) analyses at the DFT/B3LYP level of theory revealed substantial covalency in the M–Ccarbene bond with minor delocalization of electron density from the lone pair electrons on the halide ligands into antibonding molecular orbitals on the Im ligand. Calculation of the thermodynamic stability of the M–Ccarbene bond showed that these interactions are mostly endothermic in the gas phase with reduced entropies giving an overall ΔG > 0.


Sign in / Sign up

Export Citation Format

Share Document