Solvent Extraction and Stripping of Tetravalent Titanium from Acidic Chloride Solutions by Trioctylphosphine Oxide

2012 ◽  
Vol 550-553 ◽  
pp. 616-621
Author(s):  
Xue Hua Mao ◽  
Dai Jun Liu

The solvent extraction and stripping of titanium(Ⅳ) from acidic chloride solutions by trioctylphosphine oxide(TOPO) in kerosene has been investigated. The solvent extraction results demonstrate that the extracted titanium is present as TiCl4.2TOPO. The kinetics of the extraction process is very fast, since the equilibrium is reached in 5 min. In addition, the extraction of titanium (Ⅳ) increases with the total chloride concentration in the aqueous phase, as well as with the extractant concentration in the organic phase. The loading capacity of TOPO for titanium (Ⅳ) is 4.60g/100g TOPO. The stripping results show that when the O/A phase radio changing from 1 to 10, titanium (Ⅳ) is completely stripped from the mental loaded organic phase of TOPO with 1 mol dm-3 hydrochloric acid. Thus titanium (Ⅳ) can be enriched to tenfold concentration by the stripping.

Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 790
Author(s):  
Xuejiao Cao ◽  
Ting-an Zhang ◽  
Weiguang Zhang ◽  
Guozhi Lv

The solvent extraction of scandium by the mixture of di-(2-ethylhexyl) phosphate (D2EHPA) and tri-n-butyl phosphate (TBP) has been investigated in the acidic leaching solution of vanadium slag. Thermodynamic analysis of the species distribution diagrams on the Sc-S-H2O system showed that scandium mainly exists as Sc3+ and Sc(SO4)+, and sulfur mainly exists as HSO4− in the actual leaching solution of vanadium slag (pH = −0.75). The extraction process was studied to optimize various parameters such as the extractant concentration, dosage of TBP, phase ratio, and stirring speed. The results indicated that 83.64% of scandium and less than 2% of co-extracted elements were extracted under optimal conditions. Then, over 95% of the co-extracted elements and less than 1.1% of scandium were scrubbed from the loaded organic phase by 4.0 mol/L of HCl. Finally, 87.20% of scandium was stripped with 2 mol/L of NaOH and 1 mol/L of NaCl at a stripping O/A of 1:1.


Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 61
Author(s):  
Wenjie Zhang ◽  
Xian Xie ◽  
Xiong Tong ◽  
Yunpeng Du ◽  
Qiang Song ◽  
...  

Solvent extraction is the most widely used method for separation and purification of rare earth elements, and organic extractants such as di(2-ethylhexyl) phosphoric acid (P204) and di(1-methyl-heptyl) methyl phosphonate (P350) are most commonly used for industrial applications. However, the presence of impurity ions in the feed liquid during extraction can easily emulsify the extractant and affect the quality of rare earth products. Aluminum ion is the most common impurity ion in the feed liquid, and it is an important cause of emulsification of the extractant. In this study, the influence of aluminum ion was investigated on the extraction of light rare earth elements by the P204-P350 system in hydrochloric acid medium. The results show that Al3+ competes with light rare earths in the extraction process, reducing the overall extraction rate. In addition, the Al3+ stripping rate is low and there is continuous accumulation of Al3+ in the organic phase during the stripping process, affecting the extraction efficiency and even causing emulsification. The slope method and infrared detection were utilized to explore the formation of an extraction compound of Al3+ and the extractant P204-P350 that entered the organic phase as AlCl[(HA)2]2P350(o).


1975 ◽  
Vol 48 (12) ◽  
pp. 3751-3752 ◽  
Author(s):  
Yuko Hasegawa ◽  
Shinji Kurihara ◽  
Naohito Masui ◽  
Tatsuya Sekine

1975 ◽  
Vol 6 (48) ◽  
pp. no-no
Author(s):  
L. L. WIKSTROM ◽  
N. T. THOMAS ◽  
KEN NOBE

2019 ◽  
Vol 85 (4) ◽  
pp. 5-10
Author(s):  
Irina S. Rudik ◽  
Olesya N. Katasonova ◽  
Olga B. Mokhodoeva ◽  
Tatyana A. Maryutina ◽  
Boris Ya. Spivakov ◽  
...  

The possibility of Pd (II), Pt (IV), and Rh (III) separation from chloride solutions by solvent extraction in rotating coiled columns (RCC) is demonstrated. The reagents most frequently used in extraction of platinum metals were selected as extractants: trioctylamine (TOA), methyltrialkylammonium chloride (MTAA), tributylphosphate (TBP), N, N, N',N'-tetra-re-octyldiglyTOlamide (TODGA). The completeness of extraction of the platinum group metals from individual and mixed hydrochloric acidic and chloride solutions was studied depending on the nature and concentration of the extractant, acidity of the test solutions and other factors. Optimal conditions for the quantitative extraction of metals from model hydrochloric acidic and chloride solutions and subsequent selective separation at the stripping stage are specified. A scheme of multistaged extraction separation of Pd (II), Pt (IV), and Rh (III) from chloride solutions using a 0.05 M solution of MTAA in toluene as a stationary phase in RCC is proposed. The scheme includes extraction of Pd (II) and Pt (IV) ions from a chloride solution (0, 1 M HCl + 30 g/liter NT) into the organic phase with simultaneous separation of Rh(III) remaining in the aqueous phase, and sequential stripping of Pd (II) and Pt (IV) from the organic phase with a 0.01 M solution of thiourea in 0.1 M HCl and a 1 M solution of thiourea in 0.5 M HCl, respectively. The scheme was tested in separation of the platinum group metals from the technological solution of a given composition. The degree of metal extraction with a 0.05 M MTAA solution in toluene and sequential stripping with thiourea solutions is 99.5% for Rh (III), 99.9% for Pd (II), and 97.4% for Pt (IV). The separated water fractions of rhodium and platinum after leaving the column did not contain impurities of other platinum metals whereas the water fraction of palladium contained 0.5% Pt.


2004 ◽  
Vol 17 (7-8) ◽  
pp. 939-942 ◽  
Author(s):  
B. Ramachandra Reddy ◽  
J. Rajesh Kumar ◽  
K. Phani Raja ◽  
A. Varada Reddy

Sign in / Sign up

Export Citation Format

Share Document