hydrochloric acid medium
Recently Published Documents


TOTAL DOCUMENTS

295
(FIVE YEARS 64)

H-INDEX

29
(FIVE YEARS 5)

2021 ◽  
Vol 21 (12) ◽  
pp. 6024-6034
Author(s):  
Yan Li ◽  
He-Ping Yang ◽  
Shu Chen ◽  
Xiang-Jiang Wu ◽  
Yun-Fei Long

Carbon dots have good biocompatibility, low toxicity, excellent photoluminescence properties, and good light stability, endowing them good application prospects in drug detection, chemical analysis, drug delivery, and other fields. In this study, p-phenylenediamine was used as the carbon source, and carbon dots were synthesized in hydrochloric acid medium using microwave method. When the excitation wavelength is about 300 nm, a strong emission peak of 689 nm is detected for the synthesized carbon dots. Carbon dots’ size is about 4.0±0.2 nm, and the carbon dots with spherical shape are uniformly distributed. The quantum yield of carbon dots is 8.07%. In addition, cephalosporins. were detected and analyzed using synthetic carbon dots. The results show that the presence of cephalosporins reduced the fluorescence intensity of carbon dots, and the reduced fluorescence intensity of the synthesized carbon dots showed a linear correlation with the cephalosporins’ concentration. Cephalosporins’ detection scope is 0.2 μmol/L to 80 μ mol/L, and the detection limit is 0.084 μ mol/L. A mechanism study shows that the effect of cephalosporins on carbon dot’s fluorescence intensity can be attributed to the inner filter effect of cephalosporins. On this basis, a sensitive and 0selective cephalosporins detection method was established. Furthermore, this established method for cephalosporins detection was applied to real samples, resulting in a low relative standard deviation (RSD) and good recoveries.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abd El-Aziz S. Fouda ◽  
Abdelmonem H. El-Askalany ◽  
Ahmed F. S. Molouk ◽  
Niveen S. Elsheikh ◽  
Ashraf S. Abousalem

AbstractThe present work aims to study 6-amino-4-aryl-2-oxo-1-phenyl-1,2-dihydropyridine-3,5-dicarbonitrile derivatives namely: 6-Amino-2-oxo-1,4-diphenyl-1,2-dihydropyridine-3,5-dicarbonitrile (PdC-H), 6-Amino-2-oxo-1-phenyl-4-(p-tolyl)-1,2-dihydropyridine-3,5-dicarbonitrile (PdC-Me) and 6-Amino-4-(4-hydroxyphenyl)-2-oxo-1-phenyl-1,2-dihydropyridine-3,5-dicarbonitrile (PdC-OH) as corrosion inhibitors to provide protection for carbon steel in a molar hydrochloric acid medium. Chemical measurements such as (weight loss) and electrochemical techniques such as (Potentiodynamic polarization, electrochemical impedance spectroscopy, and Electron frequency modulation) were applied to characterize the inhibitory properties of the synthesized derivatives. The adsorption of these derivatives on the carbon steel surface was confirmed by Attenuated Total Refraction Infrared (ATR-IR), Atomic Force Microscope (AFM), and X-ray Photoelectron Spectroscopy (XPS). Our findings revealed that the tested derivatives have corrosion inhibition power, which increased significantly from 75.7 to 91.67% on the addition of KI (PdC-OH:KI = 1:1) to inhibited test solution with PdC-OH derivative at 25 °C. The adsorption process on the metal surface follows the Langmuir adsorption model. XPS analysis showed that the inhibitor layer consists of an iron oxide/hydroxide mixture in which the inhibitor molecules are incorporated. Computational chemical theories such as DFT calculations and Mont Carlo simulation have been performed to correlate the molecular properties of the investigated inhibitors with experimental efficiency. The theoretical speculation by Dmol3 corroborates with the results from the experimental findings.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fatemeh Marhamati ◽  
Mohammad Mahdavian ◽  
Saeed Bazgir

AbstractPlant extracts have gained a lot of attention due to their ecofriendly nature for corrosion inhibition. In this study, we examined the inhibition performance of grape seed extract as an eco-environmental inhibitor for mild steel in hydrochloric acid medium. Electrochemical impedance spectroscopy, potentiodynamic polarization, and electrochemical noise techniques were employed to study mild steel's electrochemical behavior in the hydrochloric acid solutions containing grape seed extract. Results depicted that grape seed extract could successfully inhibit the corrosion of mild steel. Besides, water droplet contact angle, field-emission scanning electron microscopy coupled with energy dispersive spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy were utilized to study the surface of mild steel specimens after dipping in acidic solutions. Electrochemical impedance results showed a corrosion efficiency of about 88% in 300 ppm of grape seed extract. Also, results revealed more compact corrosion products with improved integrity in the presence of grape seed, which confirmed electrochemical test results.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Okechukwu Okechukwu Onukwuli ◽  
Benson Chinweuba Udeh ◽  
Monday Omotioma ◽  
Ikechukwu Abuchi Nnanwube

Purpose The purpose of this study was to investigate cimetidine as corrosion inhibitor of aluminium in hydrochloric acid medium. Design/methodology/approach Cimetidine was characterized by gas chromatography mass spectrophotometer and Fourier transform infrared spectroscopy to determine its chemical composition and functional groups, respectively. Gravimetric, potentiodynamic polarization and electrochemical impedance spectroscopic techniques were used in the corrosion inhibition process. Thermodynamic and adsorption parameters were evaluated. And response surface methodology was used to optimize the corrosion inhibition process. Findings Analysis of the results revealed that major constituents of cimetidine include metronidazole, n-hexadecanoic acid cyclohexane and methyl ester. It has C-H stretch, C = N stretch, CH3C-H bend, ring C = C stretch, -C-O-O stretch, N-H bend, C-O stretch and C-H bend as predominant functional groups. Adsorption of molecules of the inhibitor on the aluminium surface was spontaneous, and it followed mechanism of physical adsorption. Response surface methodology revealed that quadratic model adequately described the inhibition efficiency of cimetidine as function of inhibitor concentration, temperature and time. Chemical and electrochemical results are in agreement that the cimetidine is a viable corrosion inhibitor. Cimetidine was revealed as mixed-type inhibitor because it controlled both cathodic and anodic reactions. Originality/value Empirical and optimization studies of cimetidine drug as corrosion inhibitor of aluminium in hydrochloric acid medium were carried out. The research results can provide the basis for deploying drugs (with mucosal protective and antacid properties) for corrosion control of metallic structures.


Author(s):  
Ping Lv ◽  
Ronghao Liu ◽  
Yangyang Wang ◽  
Xiaoxia Liu ◽  
Yang Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document