hexyl ester
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 10)

H-INDEX

17
(FIVE YEARS 1)

Author(s):  
L. N. Korobova ◽  
T. A. Kizimova ◽  
A. A. Pobelenskaya ◽  
T. G. Lomova

The authors studied the effect of the bacterial-humic preparation AFG-b containing the spore-forming bacteria Bacillus subtilis and Bacillus amyloliquefaciens in a production experiment in the northern forest-steppe of the Novosibirsk Priob’ye region. The preparation was used on midearly spring wheat, which forms grain at the level of valuable wheat. The drug was used as an antistressant together with herbicides against dicotyledonous and monocotyledonous plants. The tank mixture used was metsulfuron-methyl, fenoxaprop-P-ethyl with the antidote cloquintoset-mexyl and 2-ethyl hexyl ester of 2,4-D with florasulam. The bacterial-humic preparation AFG-b is known to level out herbicide stress in wheat and improve plant health. It improves the condition of leaf cell membranes by preventing the escape of electrolytes from the cells. On the roots of plants one month after applying the antistressant, the authors observed a 1.5-2 times reduction in the development and prevalence of root rot of fusarium-helminthosporiosis etiology. The authors also marked the most pronounced phytosanitary effect of the preparation’s bacteria, which are antagonists of phytopatho- gens for plants’ primary roots and epicotyl. An increase in plant productivity manifests the anti-stress and growth-stimulating effect of AFG-b. During the growing season of 2020, the bio preparation combined with herbicides provided a reliable increase of 40.2% of the grain of spring wheat and improved its quality by enhancing the protein and gluten content. Under 2019 conditions, AFG-b increased grain yield relative to herbicides by about 8% and did not affect grain quality. Application of AFG-b as an anti-stressant is not accompanied by improvement of seed quality of the new crop. It does not improve its phytosanitary status in infestation by phytopathogens Bipolaris sorokiniana, Fusarium sp., Alternaria, Stagonospora nodorum, Penicillium and Aspergillus relative to herbicides alone.


2021 ◽  
Vol 14 (2) ◽  
pp. 77-88
Author(s):  
Y.C. David ◽  
J.B. Ylagan ◽  
H.A. Gonzales ◽  
J.M.P. Chan ◽  
J.M.S. Mondragon ◽  
...  

Summary Emission of volatile organic compounds (VOCs) in plants is triggered by several biotic and abiotic factors, such as nutrient deficiency, environmental stress, and pathogenic attacks. For instance, plants suffering from limited or excessive nitrogen (N) supply may experience internal stress which can ultimately lower their stability and immunity making them susceptible to infection and infestation. In this study, VOCs from Capsicum annuum var. longum (Solanaceae) exposed to nitrogen (1.8 g/L, 4.5 g/L, and 9 g/L urea) were extracted using a 100 μm Solid Phase Microextraction (SPME) fiber coated with polydimethylsiloxane (PDMS). Using Gas Chromatography-Mass Spectrometry (GC-MS), extracted VOCs from N-treated plants were identified as Butanoic acid, 3-hexenyl ester, (E)-; Butanoic acid, hexyl ester; Hexanoic acid, 3-hexenyl ester, (Z)-; Hexanoic acid, 4-hexen-1-yl ester; cis-3-Hexenyl cis-3-hexenoate and 4-Pentenoic acid 2-methyl-, hexyl ester. Among these volatiles, butanoic acid, 3-hexenyl ester showed the most distinctive peak from the N-treated plants in comparison with the untreated. In addition, the Green Leaf Volatiles (GLV) 3-Hexenal; 2-Hexenal; 3-Hexen-1-ol, (Z)-; 2-Hexen-1-ol, (E) and 1-Hexanol were also detected from the N-treated plants. The identification of plant volatiles provides useful information that can be used in agricultural practices and plant phenotyping.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiaojie Liu ◽  
Nini Hao ◽  
Ruifang Feng ◽  
Zhipeng Meng ◽  
Yanan Li ◽  
...  

Abstract Background Aroma is one the most crucial inherent quality attributes of fruit. ‘Ruixue’ apples were selected from a cross between ‘Pink Lady’ and ‘Fuji’, a later ripening yellow new cultivar. However, there is little known about the content and composition of aroma compounds in ‘Ruixue’ apples or the genetic characters of ‘Ruixue’ and its parents. In addition, the metabolic pathways for biosynthesis of aroma volatiles and aroma-related genes remain poorly understood. Results Volatile aroma compounds were putatively identified using gas chromatography-mass spectrometry (GC–MS). Our results show that the profile of volatile compounds changes with ripening. Aldehydes were the dominant volatile compounds in early fruit development, with alcohols and esters increasing dramatically during maturation. On the basis of a heatmap dendrogram, these aroma compounds clustered into seven groups. In ripe fruit, esters and terpenoids were the main aroma volatiles in ripening fruit of ‘Pink Lady’ and ‘Fuji’ apples, and they included butyl 2-methylbutanoate; propanoic acid, hexyl ester; propanoic acid, hexyl ester; hexanoic acid, hexyl ester; acetic acid, hexyl ester and (Z, E)-α-farnesene. Interestingly, aldehydes and terpenoids were the dominant volatile aroma compounds in ripening fruit of ‘Ruixue’, and they mainly included hexanal; 2-hexenal; octanal; (E)-2-octenal; nonanal and (Z, E)-α-farnesene. By comparing the transcriptome profiles of ‘Ruixue’ and its parents fruits during development, we identified a large number of aroma-related genes related to the fatty acid, isoleucine and sesquiterpenoid metabolism pathways and transcription factors that may volatile regulate biosynthesis. Conclusions Our initial study facilitates a better understanding of the volatile compounds that affect fruit flavour as well as the mechanisms underlying differences in flavour between ‘Ruixue’ and its parents.


2020 ◽  
Author(s):  
Xiaojie Liu ◽  
Nini Hao ◽  
Ruifang Feng ◽  
Zhipeng Meng ◽  
Yanan Li ◽  
...  

Abstract Background: Aroma is one the most crucial inherent quality attributes of fruit. ‘Ruixue’ apples were selected from a cross between ‘Pink Lady’ and ‘Fuji’, a later ripening yellow new cultivar. However, there is little known about the content and composition of aroma compounds in ‘Ruixue’ apples or the genetic characters of ‘Ruixue’ and its parents. In addition, the metabolic pathways for biosynthesis of aroma volatiles and aroma-related genes remain poorly understood.Results: Volatile aroma compounds were identified using gas chromatography-mass spectrometry (GC-MS). Our results show that the aroma profile of volatile compounds changes with ripening. Aldehydes were the dominant volatile compounds in early fruit development, with alcohols and esters increasing dramatically during maturation. In ripe fruit, esters and terpenoids were the main aroma volatiles in ripening fruit of ‘Pink Lady’ and ‘Fuji’ apples, and they included butyl 2-methylbutanoate, propanoic acid, hexyl ester, propanoic acid, hexyl ester, hexanoic acid, hexyl ester, acetic acid, hexyl ester and (Z, E)-α-farnesene. Interestingly, aldehydes and terpenoids were the dominant volatile aroma compounds in ripening fruit of ‘Ruixue’, and they mainly included 2-hexenal, 2-hexenal, octanal, (E)-2-octenal, nonanal and (Z, E)-α-farnesene. By comparing the transcriptome profiles of ‘Ruixue’ and its parents fruits during development, we identified a large number of aroma-related genes related to the fatty acid, isoleucine and sesquiterpenoid metabolism pathways and transcription factors that may regulate aroma biosynthesis. Conclusions: Our initial study facilitates a better understanding of the volatile aroma compounds that affect fruit flavour as well as the mechanisms underlying differences in flavour between ‘Ruixue’ and its parents.


2020 ◽  
Vol 14 ◽  
Author(s):  
Hasnain Hussain ◽  
Wei-Jie Yan ◽  
Zainab Ngaini ◽  
Norzainizul Julaihi ◽  
Rina Tommy ◽  
...  

Background: Sago palm is an important agricultural starch-producing crop in Malaysia. The trunk of sago palm is responsible for the production of the starch reaching maturity for harvesting after ten years. However, there are sago palms that failed to develop its trunk after 17 years being planted. This is known as a stressed “non-trunking” sago palm, which eliminates the economic value of the palms. Objective: The study was initiated to compare the differences in metabolite expression between trunking and non-trunking sago palm and secondly to determine the potential metabolite-makers that are related to differential phenotypes of sago palms. Method: Metabolites were extracted using various solvents and analysed using NMR spectroscopy and GC-MS spectrometry. Data obtained were subjected to principal component analysis. Results: The study determined that differential metabolites expression were detected in the leaf extracts of normal trunking sago palm compared to the non-trunking palms. Metabolite groups which are differently expressed between trunking and non-trunking sago palm are oils and waxes, haloalkanes, sulfite esters, phosphonates, phosphoric acid, thiophene ester, terpenes and tocopherols. GC-MS analysis of Jones & Kinghorn extraction method determined two sets of metabolite markers which explains the differences in metabolites expression of trunking and non-trunking sago palm in ethyl acetate and methanol extract of 89.55% comprising sulfurous ester compounds and 87.04% comprising sulfurous ester, sulfurous acid and cyclohexylmethyl hexyl ester respectively. Conclusion: Two sets of metabolite markers were expressed in the trunking and non-trunking sago palm. These metabolites can potentially be used as markers for identifying normal and stressed plants.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ran Zhou ◽  
Ke Zhang ◽  
Tiange Zhang ◽  
Tong Zhou ◽  
Hongjun Chu ◽  
...  

Abstract Oviposition by Gasterophilus pecorum on shoot tips of Stipa caucasica is a key determinant of its severe infection of the reintroduced Przewalski’s horse (Equus przewalskii). Volatiles in shoots of grasses on which Przewalski’s horse feeds, including S. caucasica at preoviposition, oviposition, and postoviposition stages of G. pecorum, S. caucasica, Stipa orientalis, and Ceratoides latens at the oviposition stage, and S. caucasica in various growth periods, were collected by dynamic headspace adsorption and analyzed by automatic thermal desorption gas chromatography-mass spectrometry. Among five volatiles with highest relative contents under three sets of conditions, caprolactam and 3-hexen-1-ol,(Z)- were common to all samples. Caprolactam was highest in C. latens at oviposition stage of G. pecorum and lowest in S. caucasica at postoviposition stage, and that of 3-hexen-1-ol,(Z)- was lowest in C. latens and highest in S. caucasica at its oviposition stage. Particularly, in S. caucasica during the three oviposition phenological stages of G. pecorum, 3-hexen-1-ol,acetate,(Z)-, 2(5H)-furanone,5-ethyl-, and 3-hexen-1-ol,acetate,(E)- were unique, respectively, to the preoviposition, oviposition, and postoviposition stages; in three plant species during the oviposition stage of G. pecorum, 3-hexen-1-ol,acetate,(Z)-, 3-hexenal, and 1-hexanol were unique to S. orientalis, acetic acid, hexanal, and 2(5H)-furanone,5-ethyl- to S. caucasica, and 1,3,6-octatriene,3,7-dimethyl-, cis-3-hexenyl isovalerate, and acetic acid hexyl ester to C. latens; in S. caucasica, 2-undecanone,6,10-dimethyl- was unique to the early growth period, acetic acid and 2(5H)-furanone,5-ethyl- to the flourishing growth period, and 3-hexen-1-ol,acetate,(Z)- and 1,3,6-octatriene,3,7-dimethyl- to the late growth period. Furthermore, substances specific to S. orientalis and C. latens were also present in S. caucasica, except at oviposition stage. Our findings will facilitate studies on G. pecorum’s adaptation to the arid desert steppe and its future control.


2020 ◽  
Author(s):  
Xiaojie Liu ◽  
Nini Hao ◽  
Ruifang Feng ◽  
Zhipeng Meng ◽  
Yana Li ◽  
...  

Abstract Background: Aroma is one the most crucial inherent quality attributes of fruit. ‘Ruixue’ apples were selected from a cross between ‘Pink Lady’ and ‘Fuji’, a later ripening yellow new cultivar. However, there is little known about the content and composition of aroma compounds in ‘Ruixue’ apples or the genetic characters of ‘Ruixue’ and its parents. In addition, the metabolic pathways for biosynthesis of aroma volatiles and aroma-related genes remain poorly understood.Results: Volatile aroma compounds were identified using gas chromatography-mass spectrometry (GC-MS). Our results show that the aroma profile of volatile compounds changes with ripening. Aldehydes were the dominant volatile compounds in early fruit development, with alcohols and esters increasing dramatically during maturation. In ripe fruit, esters and terpenoids were the main aroma volatiles in ripening fruit of ‘Pink Lady’ and ‘Fuji’ apples, and they included butyl 2-methylbutanoate, propanoic acid, hexyl ester, propanoic acid, hexyl ester, hexanoic acid, hexyl ester, acetic acid, hexyl ester and (Z, E)-α-farnesene. Interestingly, aldehydes and terpenoids were the dominant volatile aroma compounds in ripening fruit of ‘Ruixue’, and they mainly included 2-hexenal, 2-hexenal, octanal, (E)-2-octenal, nonanal and (Z, E)-α-farnesene. By comparing the transcriptome profiles of ‘Ruixue’ and its parents fruits during development, we identified a large number of aroma-related genes related to the fatty acid, isoleucine and sesquiterpenoid metabolism pathways and transcription factors that may regulate aroma biosynthesis. Conclusions: Our initial study facilitates a better understanding of the volatile aroma compounds that affect fruit flavour as well as the mechanisms underlying differences in flavour between ‘Ruixue’ and its parents.


2019 ◽  
Vol 8 (1) ◽  
pp. 29-37 ◽  
Author(s):  
A. D. Kaprin ◽  
A. A. Trushin ◽  
M. P. Golovachenko ◽  
V. I. Ivanova-Radkevich ◽  
V. I. Chissov ◽  
...  

This article presents the results of a clinical study that examined the diagnostic efficacy of fluorescent diagnostics (FD) of non-muscularinvasive bladder cancer using a photosensitizer of FD of malignant neoplasms – 5-aminolevulinic acid hexyl ester (5-ALA HE) compared with standard cystoscopy. The study involved 110 patients. The study began with intravesical administration of 50 ml of 0.2% solution of 5-ALA HE, the exposure time was 1 hour, after which the drug was removed from the organ. During the next hour, the mucous membranes were examined in two cystoscopy modes, followed by a standard transurethral resection of all urothelium sites with suspicion for tumor lesion based on white light and visible red fluorescence, and a control blind biopsy from the visually unchanged and non-fluorescent mucous tissue in each patient. The results of the study indicate the high effectiveness of the developed FD methodology with 5-ALA HE in detecting non-muscularinvasive bladder cancer during intravesical administration of the drug, due to selective accumulation of hexasens-induced PPIX in the tumor tissue compared with healthy mucosa. Compared with the results of standard cystoscopy, fluorescence diagnostics significantly increased diagnostic sensitivity by 24.4% (from 75.1% to 99.5%), diagnostic accuracy – by 15.8% (from 82.4% to 98.2%) and a negative predictive value – by 33.2% (from 65.8% to 99%) (p≤0.05). Additionally, a total of 37 (33.6%) patients was found to have 63 foci of fluorescence with a diameter of 2.5 to 3.0 mm. 59 of these were morphologically confirmed to contain cancer cells.


Sign in / Sign up

Export Citation Format

Share Document