Transient Simulation of Electromagnetic Forming of Aluminium Tubes

2005 ◽  
Vol 6-8 ◽  
pp. 639-648 ◽  
Author(s):  
C. Karch ◽  
Karl Roll

The recent push to use more aluminium in automobiles has stimulated interest in understanding electromagnetic forming (EMF), which uses induced electromagnetic fields to generate high strain rates during the forming process. The high strain rates increase the formability of aluminum materials and might reduce elastic spring-back and wrinkling of the workpiece. Primary emphasis is placed on including of all relevant physical phenomena, which govern the process, as well as their numerical representation by means of simplified electrical equivalent circuits for the EMF machine and fully coupled field approach of the transient electromagnetic and mechanical phenomena. Moreover, the thermal effects due to Joule heating by eddy currents and plastic work are considered. The numerical model predicts the electromagnetic field, temperature, stress, and deformation properties that occur during the forming process. The numerical results of the tube deformation are compared with available experimental data.

2021 ◽  
Vol 5 (3) ◽  
pp. 96
Author(s):  
Gilles Avrillaud ◽  
Gilles Mazars ◽  
Elisa Cantergiani ◽  
Fabrice Beguet ◽  
Jean-Paul Cuq-Lelandais ◽  
...  

In order to take up some challenges in metal forming coming from the recent environmental stakes, Electromagnetic Forming and Electro-Hydraulic Forming processes have been developed at the industrial scale, using the advantages of high strain rates. Such progress has been possible in particular thanks to the emergence of strongly coupled simulation tools. In this article, some examples have been selected from some industrial applications in deep forming, postforming, embossing, and complex shapes forming. It shows how in particular, the increase in formability can bring benefits to solve customer issues in the automotive, luxury packaging, aeronautic, and particles accelerator sectors. Some simulation results are presented to explain how this highly dynamic forming occurs for each of these applications.


2010 ◽  
Vol 433 ◽  
pp. 339-344
Author(s):  
Yoshinobu Motohashi ◽  
Makoto Kikuchi ◽  
Takaaki Sakuma ◽  
Eitaro Yukutake ◽  
Isao Kuboki

During superplastic deformation (SPD) of tetragonal zirconia polycrystals containing 3 mol% yttria (3Y-TZP) at high strain-rates, a number of crack-like flat cavities having very narrow gaps lying along grain boundaries mostly normal to the tensile axis are produced in addition to conventional cavities. The formation and growth of these flat cavities are responsible for the strain softening that appears on the true stress versus true strain curves. The growth and coalescence of the flat cavities were a main cause of the degradation of elongation to fracture. We have found that a simple treatment, in which the superplastic deformation is temporally stopped, i.e., the cross-head movement is reversed and accordingly the applied load is removed, and then the specimen is kept at the test temperature for several minutes, is surprisingly effective to reduce the flat cavities. Carrying out this simple treatment repeatedly, after 30% nominal stain during the SPD, led to an increace in total elongation by about three times larger than that of a specimen not subjected to such a treatment. This treatment can also recover the strength and accordingly mechanical properties of the superplastically deformed 3Y-TZP to that of the undeformed state. This finding is believed to be quite significant for practical applications of superplasticity in 3Y-TZP, because the flat cavities can be closed very simply by keeping a product at the forming temperature after or during the superplastic forming process.


2000 ◽  
Vol 10 (PR9) ◽  
pp. Pr9-335-Pr9-340 ◽  
Author(s):  
E. El-Magd ◽  
M. Brodmann

2003 ◽  
Vol 110 ◽  
pp. 571-576 ◽  
Author(s):  
A. A. Mir ◽  
D. C. Barton ◽  
T. D. Andrews ◽  
P. Church

Sign in / Sign up

Export Citation Format

Share Document