flow curves
Recently Published Documents


TOTAL DOCUMENTS

512
(FIVE YEARS 90)

H-INDEX

36
(FIVE YEARS 5)

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 7
Author(s):  
Xia-Yu Chi ◽  
Xiao-Min Chen ◽  
Yong-Cheng Lin ◽  
Xian-Zheng Lu

The hot deformation characteristics of a GH4169 superalloy are investigated at the temperature and strain rate ranges of 1193–1313 K and 0.01–1 s−1, respectively, through Gleeble-3500 simulator. The hot deformed microstructures are analyzed by optical microscopy (OM), transmission electron microscopy (TEM), and electron backscattered diffraction (EBSD) technology. The effects of deformation parameters on the features of flow curves and annealing twins are discussed in detail. It is found that the shapes of flow curves are greatly affected by the deformation temperature. Broad peaks appear at low deformation temperatures or high strain rates. In addition, the evolution of annealing twins is significantly sensitive to the deformation degree, temperature, and strain rate. The fraction of annealing twins first decreases and then rises with the added deformation degree. This is because the initial annealing twin characters disappear at the relatively small strains, while the annealing twins rapidly generate with the growth of dynamic recrystallized grains during the subsequent hot deformation. The fraction of annealing twins is relatively high when the deformation temperature is high or the strain rate is low. In addition, the important role of annealing twins on dynamic recrystallization (DRX) behaviors are elucidated. The obvious bulging at initial twin boundaries, and the coherency of annealing twin boundaries with dynamic recrystallized grain boundaries, indicates that annealing twins can motivate the DRX nucleation during the hot deformation.


2021 ◽  
Vol 22 (24) ◽  
pp. 13481
Author(s):  
Cartwright Nelson ◽  
Slesha Tuladhar ◽  
Loren Launen ◽  
MD Ahasan Habib

Maintaining shape fidelity of 3D bio-printed scaffolds with soft biomaterials is an ongoing challenge. Here, a rheological investigation focusing on identifying useful physical and mechanical properties directly related to the geometric fidelity of 3D bio-printed scaffolds is presented. To ensure during- and post-printing shape fidelity of the scaffolds, various percentages of Carboxymethyl Cellulose (CMC) (viscosity enhancer) and different calcium salts (CaCl2 and CaSO4, physical cross-linkers) were mixed into alginate before extrusion to realize shape fidelity. The overall solid content of Alginate-Carboxymethyl Cellulose (CMC) was limited to 6%. A set of rheological tests, e.g., flow curves, amplitude tests, and three interval thixotropic tests, were performed to identify and compare the shear-thinning capacity, gelation points, and recovery rate of various compositions. The geometrical fidelity of the fabricated scaffolds was defined by printability and collapse tests. The effect of using multiple cross-linkers simultaneously was assessed. Various large-scale scaffolds were fabricated (up to 5.0 cm) using a pre-crosslinked hybrid. Scaffolds were assessed for the ability to support the growth of Escherichia coli using the Most Probable Number technique to quantify bacteria immediately after inoculation and 24 h later. This pre-crosslinking-based rheological property controlling technique can open a new avenue for 3D bio-fabrication of scaffolds, ensuring proper geometry.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2251
Author(s):  
Abdellatif A. Mohamed ◽  
Husham Alqah ◽  
Mohammed S. Alamri ◽  
Shahzad Hussain ◽  
Akram A. Qasem ◽  
...  

The physicochemical properties of native, annealed and enzyme-treated chickpea (CP), corn (CS), Turkish bean (TB) and sweet potato (SPS) were investigated. Germinated sorghum extract (GSET) was used as the source of enzymes. Starches were annealed in excess water by holding the slurry at 60 °C for 60 min with or without GSET. The flow curves/rheological data were fitted to the power law, Casson and Herschel–Bulkley models. Starches exhibited shear thinning behavior and a variation in the flow behavior index (n) (0.34–0.82) as a function of the starch type. The consistency index (k) of CP and CS decreased with annealing and GSET treatment but increased for TB and SPS. Annealed and GSET-treated SPS exhibited the highest yield stress compared to the other starches, except for CP. The temperature dependency of all starches was well described by the Arrhenius model (r2 = 0.88–0.99). The activation energy (Ea) values were in the range of 660–5359 (J/mol). The TB exhibited the most Ea and SPS the least. With the exception of SPS, annealing appeared to increase the Ea of all tested starches, but the range of Ea was broader for SPS and CS. Annealed and GSET starches exhibited an increase in the gelatinization temperatures (onset and peak) and a decrease in gelatinization enthalpy (ΔH). The syneresis and water holding capacity decreased after annealing or GSET treatment.


2021 ◽  
Vol 55 (6) ◽  
Author(s):  
Keran Liu ◽  
Yuanming Huo ◽  
Tao He ◽  
Cunlong Huo ◽  
Changyuan Jia ◽  
...  

The deformation behavior and microstructure of 25CrMo4 axle steel was systematically investigated by thermal compression deformation. The hot-compression test of a 25CrMo4 axle steel sample was carried out on a Gleeble-3800 thermal mechanical simulation tester. The flow behavior of the alloy was studied at the deformation temperature (900–1200 °C), strain rates (0.01; 0.1; 1.0) s–1 and the maximum deformation of 60 %. The flow curves under different deformation conditions were obtained, and the effects of the deformation temperature and strain rate on the appearance of the flow curves are discussed. The true stress-strain curve obtained by experiment is modified by friction. Based on the corrected experimental data, the activation energy determined by the regression analysis was Q = 311 kJ/mol, and the constitutive model was constructed. The high-temperature flow behavior of the 25CrMo4 axle steel was described by the Zener-Hollomon parameter. The optimum hot-deformation process parameters were determined based on the hot processing maps, followed by the analysis of the microstructure characteristics of the alloys under optimum hot working. The results show that the suitable hot-deformation process parameters of the alloy are as follows: deformation temperature is 1050–1200 °C, and strain rate is 0.01 s–1 to 0.14 s–1.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 245
Author(s):  
Adrián López-García ◽  
Gemma Moraga ◽  
Isabel Hernando ◽  
Amparo Quiles

The modern brewing industry generates high amounts of solid wastes containing biopolymers—proteins and polysaccharides—with interesting technological and functional properties. The novelty of this study was to use raw by-product from the brewing industry in the development of high internal phase emulsion (HIPE) gels. Thus, the influence of the emulsion’s aqueous phase pH and the by-product’s concentration on structural and physical stability of the emulsions was studied. The microstructure was analyzed using cryo-field emission scanning electron microscopy. To evaluate the rheological behavior, oscillatory tests (amplitude and frequency) and flow curves were conducted. Moreover, the physical stability of the emulsions and the color were also studied. The increase in by-product concentration and the pH of the aqueous phase allowed development of HIPE gels with homogeneously distributed oil droplets of regular size and polyhedral structure. The data from the rheology tests showed a more stable structure at higher pH and higher by-product concentration. This study widens the possibilities of valorizing the brewing industry’s by-products as stabilizers when designing emulsions.


2021 ◽  
Vol 11 (2) ◽  
pp. 107-112
Author(s):  
H. Kemer ◽  
R. Bouras ◽  
M. Sonebi ◽  
N. Mesboua ◽  
A. Benmounah

Abstract In order to decrease the fitting deviation between rheometrical measurements and empirical parameters using slump test, this paper proposes a new analytical method to evaluate the high yield stress of materials (cement pastes).In doing so, an experimental study was performed for measuring the empirical characteristics by cylindrical mold with different water to binder ratios (w/b) by aiming to increase the yield stress. Parallelly, experimental observations showed clearly the unyielded zone at flow stoppage of high yield stress samples. Based on these results, an idea was formed to applied metallic element at inlet of mold in order to push the spreading of paste. The obtained results of the model proposed in this paper were compared with the yield stress evaluated from shear flow curves using AR2000-rheometer with plate-plate geometry at rate-controlled. In fact, this study demonstrates the applicability and novelty of the present model in the process of relating the empirical parameters to yield stress.


Author(s):  
Vălu Gheorghe-Orlando ◽  
Susan-Resiga Daniela

Abstract In this paper we investigated from rheological point of view some samples of ferrofluid-based magnetorheological fluids (FF-MRFs) with different volumic fractions of Fe microparticles, but with the same ferrofluid used as carrier liquid. We correlated the dimensionless flow curves, measured at different values of the magnetic field induction, using either Mason number or Casson number. It has been shown that in this approach, data sets measured under different conditions collapse on a single curve. This master curve is useful for controlling the concentration of Fe particles, so that the magnetic and magnetorheological properties of FF-MRF to be adapted to obtain high-performance applications.


Author(s):  
A.K. Dorosh ◽  
A.V. Shevchuk

Dire relacxation rheometry methods carried out quantitative measurements and established quvalitative patterns of the dependencies of the main elastic-viscous characteristics for the Cybo black ink system in the temperature range of ( 293-333)°K of its technological resistence, namely : the equilibrium elastic modulus and the angle loss modulus and loss angle tangent; complex viscosity and full reological flow curves of the first shear rate and second (viscosity) of the species; degree of destraction of elastic and viscous properties depending on the value: shear stress; shear strain rate ; relative or absolute deformation on the sample and its temperature.


2021 ◽  
Vol 13 (11) ◽  
pp. 168781402110610
Author(s):  
Shahin Khoddam ◽  
Soheil Solhjoo ◽  
Peter D Hodgson

Materials engineering and science rely heavily on the indirect measurement of plastic stress and strain by post-processing of mechanical test data, including tension, torsion, and compression test. There is no consensus among researchers regarding the best test or the post-processing theory nor do adequate standards exist on the characterization methods. The tests are typically performed as customized tests, discrepancies exist in the flow curves obtained by different methods and the chosen mechanical test. More critically, the curves are dominantly treated (perceived) as a set of measured data rather than calculated values. The plasticity-based calculated flow curves and their gradients are, in turn, the basis for several second-tier indirect measurements, such as stacking fault energy and recrystallization. Such measurements are quite prone to errors due to oversimplified post-processing of the tests’ data and can only be experimentally verified in a qualitative or in an average fashion. Therefore, their findings are highly restricted by the limitations of each test, data type and post-processing method, and should be used carefully. This review examines some of the most commonly used data conversion methods and some recent developments in the field followed by recommendations. It will highlight the need to develop test rigs that can provide new data types and to provide advanced post-processing techniques for the indirect measurement.


2021 ◽  
pp. 35-38
Author(s):  
Q. D. Pham ◽  
P. V. Surukov

This article presents the results of a study of the effect of the filler content on the rheological properties of polymer composite materials based on high density polyethylene containing glass microbeads. The flow curves of the compositions were obtained by the method of capillary viscosimetry. Simple mathematical models have been constructed that allow estimating the viscosity of the compositions’ melts based on a given filler content.


Sign in / Sign up

Export Citation Format

Share Document