Numerical Simulation of Residual Stress during Stamping-Forging Forming of 2024 Aluminum Alloy Sheet Metal

2012 ◽  
Vol 602-604 ◽  
pp. 1903-1909
Author(s):  
Da Li ◽  
Lei Deng ◽  
Xin Yun Wang ◽  
Jun Song Jin ◽  
Ju Chen Xia

The unreasonable residual stress field in sheet part has an adverse effect on the dimensional accuracy and performance. A forming method combined stamping and forging was proposed to reduce the residual stress of the sheet part. The residual stress field in 2024 aluminum alloy V-shaped piece after bending and forging was analyzed by the finite element software Abaqus. The results showed that the stamping-forging forming process can significantly reduce the residual stress in round corner of V-shaped piece, and simultaneously decrease springback and improve the dimensional precision of sheet part.

2012 ◽  
Vol 39 (10) ◽  
pp. 1003001
Author(s):  
余天宇 Yu Tianyu ◽  
戴峰泽 Dai Fengze ◽  
张永康 Zhang Yongkang ◽  
安中伟 An Zhongwei ◽  
Charles LOY Charles LOY ◽  
...  

2011 ◽  
Vol 399-401 ◽  
pp. 2040-2043 ◽  
Author(s):  
Da Li ◽  
Hua Ji ◽  
Yan Liu ◽  
Guo Qing Gou ◽  
Hui Chen ◽  
...  

MIG welding and laser-MIG hybrid welding have been widely used to joint aluminum alloy in recent years. Residual stress and heat cycling of MIG welding and laser-MIG hybrid welding are analyzed by SYSWELD software. The results show that the peak values of the stress in hybrid welding is 30~50% less than the results in the MIG welded joints.


2011 ◽  
Vol 704-705 ◽  
pp. 1473-1479
Author(s):  
Jian Zhang ◽  
Yu Lin Ning ◽  
Ben Dong Peng ◽  
Zhi Hua Wang ◽  
Da Sen Bi

6xxx based alloy auto body sheet will be used widely in the future, but, in the recent, one of the difficulty in practice is its poor formability. In this paper properties parameters of 6061 aluminum alloy sheet are investigated by means of examination; By using machine performance parameters of 6061 aluminum alloy, finite element software eta/DYNAFORM of Sheet Forming make the numerical simulation of auto deck lid outer panel .Stress, plastic strain, thick variety are analyzed; and the wrinkling and cracking prone areas identified. Therefore, the effective reference can be provided for design of forming process of 6xxx Based Alloy auto panel.


2014 ◽  
Vol 34 (4) ◽  
pp. 0414003
Author(s):  
罗密 Luo Mi ◽  
罗开玉 Luo Kaiyu ◽  
王庆伟 Wang Qingwei ◽  
鲁金忠 Lu Jinzhong

2019 ◽  
Vol 16 (1) ◽  
pp. 156-168
Author(s):  
Yezhong Fang ◽  
Xiaotian Ji ◽  
Xingquan Zhang ◽  
Jun Wang ◽  
Bin Chen ◽  
...  

Purpose The purpose of this paper is to investigate the dynamic forming process of the micro dent fabricated by laser shock processing on 2024-T3 aluminum alloy. The effect of laser pluse energy on the deformation of micro dent was also discussed in detail. Design/methodology/approach It uses finite element analysis method and the corresponding laser shocking experiment. Findings The results demonstrate that the dynamic formation process of micro dent lasts longer in comparison with the shock wave loading time, and the depths of micro dents increase with the increasing laser energy. In addition, laser shocking with higher energy can result in more obvious pileup occurred at the outer edge of micro dent. Originality/value Surface micro dents can serve as fluid reservoirs and traps of the wear debris, which can decrease the effects of the wear and friction in rolling and sliding interfaces. The investigations can not only be propitious to comprehensively understand the forming mechanism of laser-shocked dent, but also be beneficial to get sight into the residual stress field induced by laser shocking.


Sign in / Sign up

Export Citation Format

Share Document