hybrid welding
Recently Published Documents


TOTAL DOCUMENTS

824
(FIVE YEARS 186)

H-INDEX

34
(FIVE YEARS 6)

2022 ◽  
Vol 148 ◽  
pp. 107781
Author(s):  
Wei Sun ◽  
Shushuai Liu ◽  
Fuqiang Guo ◽  
Dongting Wu ◽  
Yongang Zhang ◽  
...  

2022 ◽  
Vol 2160 (1) ◽  
pp. 012039
Author(s):  
Xiaoqi Hou ◽  
Xin Ye ◽  
Xiaoyan Qian ◽  
Haohao Jing ◽  
Peilei Zhang ◽  
...  

Abstract In this study, laser (TruDisk16002)-arc (MAG) hybrid welding was used to weld a 5mm thick sheet of AH36 steel with a gap of 0mm and 1mm. The results show that when the current of MAG is 205A, the voltage is 31.9V, and the laser power is 7.5KW, the welds of 0mm gap and 1mm gap are well formed, showing a typical nail shape, and the 0mm gap weld is better than 1mm. Under the same welding process parameters, the heat-affected zone of a 0mm gap weld is less than 1mm. Upper bainite is found in the 1mm weld gap structure. In the two gap cases, the residual stress on the lower surface is larger than that on the upper surface, and the residual stress in the 1mm weld gap is larger. The weldability of 0mm weld gap is better than 1mm.


2022 ◽  
Vol 2160 (1) ◽  
pp. 012026
Author(s):  
Xiaoyan Qian ◽  
Xin Ye ◽  
Xiaoqi Hou ◽  
Haohao Jing ◽  
Peilei Zhang ◽  
...  

Abstract In this research, through experiments and numerical simulations, the residual stress distribution of the top and bottom surfaces of the laser (TruDisk16002)-arc (MAG) hybrid welding seam and the weld cross-section are studied. The results show that when the arc power is 6.5KW and the laser power is 7.5KW, the weld is formed well. The residual stress on the bottom surface near the weld is higher than that on the top surface. The laser zone in the center of the weld has the largest residual stress, the arc zone is smaller, and the mixed zone is the smallest. The laser zone has the largest residual stress at the fusion line and the heat-affected zone, followed by the mixed zone, and the arc zone is the smallest. followed by the mixed zone, and the arc zone has the smallest.


2022 ◽  
Vol 2152 (1) ◽  
pp. 012031
Author(s):  
Weijie Gou ◽  
Lihong Wang

Abstract A high-speed camera is used to observe the arc starting and arc stabilization process of the TIG-MIG hybrid welding system. Paschen’s law is used to analyze the path of TIG welding arc breakdown under the condition of the conductive channel provided by the MIG welding arc, and the arc starting process of the double arc hybrid welding is determined. The study found that when the electrode spacing is less than 8.5 mm, two molten pools can form a common molten pool after arc initiation of MIG welding; when the spacing is 10 mm, the two molten pools after arc initiation form a “8” shape; When the distance is 12 mm, there is a low temperature zone between the two arcs, which is separated.


2022 ◽  
Vol 73 ◽  
pp. 736-747
Author(s):  
Xi'an Fan ◽  
Xiangdong Gao ◽  
Nanfeng Zhang ◽  
Guangwen Ye ◽  
Guiqian Liu ◽  
...  

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 99
Author(s):  
Hongyang Wang ◽  
Bin Huang ◽  
Jinzhu Li ◽  
Nan Li ◽  
Liming Liu

Welding and riveting hybrid bonding technology was applied to join 6061 aluminum alloy and carbon fiber reinforced plastics (CFRP). The laser-arc hybrid welding process and stepped rivets were used in the experiments to reduce the impact of the poor heat resistance of composites. The effect of hybrid welding arc current on the formation and mechanical properties of 6061 Al/CFRP joints was studied. Tensile shear load up to 4.65 kN was achieved by adjusting process parameters. The welding process and mode of the fracture were analyzed. The hybrid bonded joint obtained consisted of two parts: a welded joint of Al plate and Al rivet, and a bonded interface between Al plate and CFRP plate. The mechanical properties of the hybrid joint were mainly determined by the Al plate/Al rivet welded joint. The results of the study show that there are three interfacial bonding mechanisms between aluminum and CFRP. In addition to mechanical bonding between the Al plate and CFRP plate, there were also metallurgical bonding of Al-Mg intermetallic compounds with resin matrix and chemical reactions of aluminum with resin and carbon fibers at the interface, which could improve the mechanical properties of the joints.


Author(s):  
Mikihito Hirohata ◽  
Gang Chen ◽  
Kuya Morioka ◽  
Kengo Hyoma ◽  
Naoyuki Matsumoto ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1910
Author(s):  
Zheng-Xiong Ma ◽  
Pei-Xin Cheng ◽  
Jie Ning ◽  
Lin-Jie Zhang ◽  
Suck-Joo Na

With the rapid development of high power laser, laser welding has been widely used in many fields including manufacturing, metallurgy, automobile, biomedicine, electronics, aerospace etc. Because of its outstanding advantages, such as high energy density, small weld size, easy automation. Combining the two heat sources of laser and arc for welding can achieve excellent results due to the synergistic effect. Laser welding is a complicated physical and chemical metallurgical process, involving the laser beam and molten pool, keyholes and materials melting, evaporation and multiple physical process. Process monitoring and quality control are important content of research and development in the field of laser welding, which is the premise to obtain fine weld with high quality. Numerical simulation technology can describe many complex physical phenomena in welding process, which is very important to predict weld forming and quality and clarify the underline mechanism. In this paper, the research progress of process monitoring, quality control and autonomous intelligent design of laser and laser-arc hybrid welding based on numerical simulation were reviewed, and the research hotspots and development trends of laser welding in the future are predicted.


2021 ◽  
Author(s):  
Kai Li ◽  
Chunsheng Wang ◽  
Guangzhong He ◽  
Hongxiao Wang ◽  
Meng Tian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document